Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

О.А. Мишурина Э.Р. Муллина

УГЛЕВОДОРОДЫ АЛИФАТИЧЕСКОГО РЯДА

Утверждено Редакционно-издательским советом университета в качестве учебного пособия

Рецензенты:

заведующий лабораторией обогащения ООО «УралГеоПроект» **В.III. Галямов**

кандидат химических наук, доцент кафедры физики, ФГБОУ ВО «Магнитогорский государственный технический университет им. Г.И. Носова» В.А. Дозоров

Мишурина О.А., Муллина Э.Р.

Углеводороды алифатического ряда [Электронный ресурс] : учебное пособие / Ольга Алексеевна Мишурина, Эльвира Ринатовна Муллина ; ФГБОУ ВО «Магнитогорский государственный технический университет им. Г.И. Носова». – Электрон. текстовые дан. (1,65 Мб). – Магнитогорск : ФГБОУ ВО «МГТУ им. Г.И. Носова», 2020. – 1 электрон. опт. диск (CD-R). – Систем. требования : IBM РС, любой, более 1 GHz ; 512 Мб RAM ; 10 Мб HDD ; МЅ Windows XP и выше ; Adobe Reader 8.0 и выше ; CD/DVD-ROM дисковод ; мышь. – Загл. с титул. экрана.

ISBN 978-5-9967-2019-4

Пособие составлено в соответствии с рабочей программой дисциплины «Органическая химия» и «Органический синтез». В представленном учебном пособии большое внимание уделяется общетеоретическим основам современной органической химии: строению органических соединений алифатического ряда, механизмам реакций, современным физико-химическим и физическим методам исследования. В каждой главе, после изложения теоретического материала, даны обучающие тестовые задания, которые помогают обучающимся глубже понять теоретический материал. В пособии приводятся варианты контрольных работ, с помощью которых обучающийся может проверить уровень своей подготовки, а также задания для контроля усвоения знаний со стороны преподавателя.

Пособие предназначено для студентов, изучающих дисциплины «Органическая химия и органический синтез».

УДК 547 (075.8) ББК 24.2 я7

ISBN 978-5-9967-2019-4

- © Мишурина О.А., Муллина Э.Р., 2020
- © ФГБОУ ВО «Магнитогорский государственный технический университет им. Г.И. Носова», 2020

Содержание

ВВЕДЕНИЕ	4
1. ОБЩИЕ СВЕДЕНИЯ О СТРОЕНИИ И КЛАССИФИКАЦИИ	
УГЛЕВОДОРОДОВ	5
1.1. Классификация углеводородов	5
1.2. Типы гибридизации атома углерода в органических соединениях	7
1.2.1. Способы перекрывания электронных орбиталей	8
1.2.2. Типы гибридизации атомов углерода	9
2. АЛКАНЫ	14
2.1. Способы получения алканов	14
2.2. Химические свойства алканов	16
2.3. Задания для самоконтроля по теме «Алканы»	
3. АЛКЕНЫ	25
3.1. Способы получения алкенов	25
3.2. Химические свойства	26
3.3. Задания для самоконтроля по теме «Алкены»	34
4. АЛКИНЫ	44
4.1. Способы получения алкинов	44
4.2. Химические свойства алкинов	45
4.3. Задания для самоконтроля по теме «Алкины»	49
5. АЛКАДИЕНЫ	56
5.1. Способы получения алкадиенов	56
5.2. Химические свойства алкадиенов	57
5.3. Задания для самоконтроля по теме «Алкадиены»	60
6. ВАРИАНТЫ КОНТРОЛЬНЫХ РАБОТ по теме: «Алифатические	
углеводороды»	64
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	85

ВВЕДЕНИЕ

Учебное пособие написано в соответствии с требованиями Федеральных государственных образовательных стандартов высшего образования и программе учебного курса «Органическая химия» и «органический синтез».

Данная методическая разработка предназначена для студентов различных профилей специальностей, изучающих базовый курс органической химии.

Приоритет самостоятельной работы в процессе обучения, уменьшение количества аудиторных занятий, превращение их по содержанию в установочные, методологические, общеприняты в настоящее время. Это вызывает необходимость выполнения студентами разного уровня практических заданий в процессе самостоятельного освоения учебного материала.

С целью более глубокого изучения темы «Алифатические углеводороды» в данной работе предлагаются многовариантные задания, позволяющие усвоить следующие понятия:

- изомерия алифатических углеводородов, их номенклатура;
- основные химические свойства различных алифатических углеводородов, их механизм;
 - способы их получения;
 - генетическая связь алифатических углеводородов;
- расчеты при нахождении формул углеводородов, выхода продуктов реакций.

Отличием данного учебного пособия от уже существующих является наличие вариантов контрольных вопросов и тестовых заданий для самоконтроля и закрепления изучаемого материала. Предложен комплект вариативных задач различного уровня сложности.

1. ОБЩИЕ СВЕДЕНИЯ О СТРОЕНИИ И КЛАССИФИКАЦИИ УГЛЕВОДОРОДОВ

1.1. Классификация углеводородов

Углеводороды по характеру углеродного скелета делятся на алифатические (с открытой цепью) и циклические (с замкнутой). По признаку наличия кратных связей они подразделяются на насыщенные (не содержащие кратных связей, только σ -связи) и ненасыщенные (содержащие хотя бы одну кратную связь, то есть имеющие σ - и π -связи) (рис. 1).

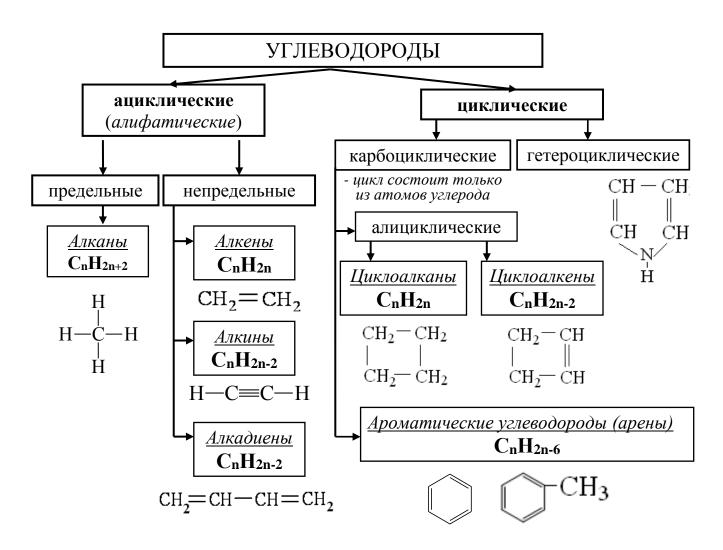


Рис. 1. Классификация углеводородов

<u>Ациклические соединения</u> – соединения с открытой (незамкнутой) углеродной цепью.

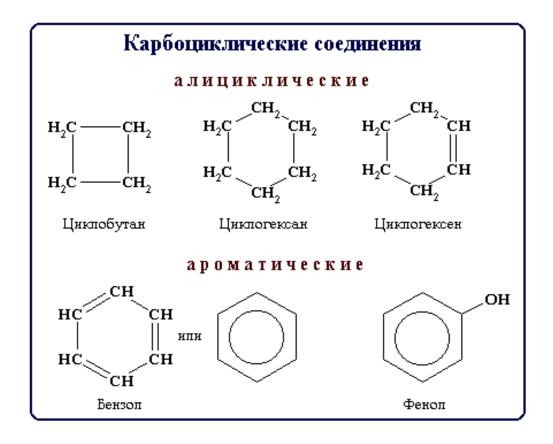
Среди ациклических соединений различают *предельные* (насыщенные), содержащие в скелете только одинарные связи С-С и *непредельные* (ненасыщенные), включающие кратные связи С=С и С≡С.

<u> Циклические соединения</u> - соединения с замкнутой углеродной цепью.

В зависимости от природы атомов, составляющих цикл, различают карбоциклические и гетероциклические соединения.

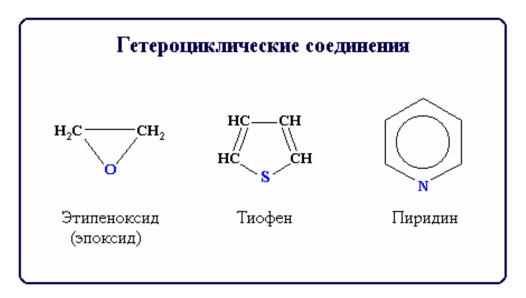
Ациклические соединения

 предельные
 Br



$$CH_3$$
— CH_2 — CH_2 — CH_2 — CH_3
 CH_3 — CH — CH_2 — CH_3

 и-Пентан
 2-Бромбутан


 ие предельные
 CH_3
 CH_2 = CH - CH_3
 CH_2 = C - CH = CH_2
 HC

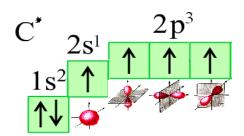
 Пролилен
 Изопрен
 Ацетилен

Карбоциклические соединения содержат в цикле только атомы углерода. Они делятся на две существенно различающихся по химическим свойствам группы: алифатические циклические - сокращенно *алициклические* - и *ароматические* соединения.

<u>Гетероциклические соединения</u> содержат в цикле, кроме атомов углерода, один или несколько атомов других элементов - *гетероатомов* (от греч. *heteros* - другой, иной) - кислород, азот, серу и др.

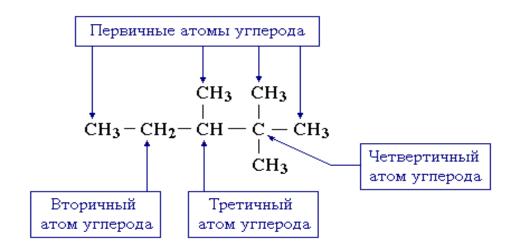
Гомологический ряд — это ряд сходных по составу, строению и химическим свойствам органических соединений, построенный в порядке возрастания их относительных молекулярных масс в котором каждый следующий член ряда отличается от предыдущего на группу —CH₂.

Гомологи — это вещества, принадлежащие к одному классу, сходные по строению и химическим свойствам, но отличающиеся друг от друга на одну или несколько групп — CH_2 — гомологическая разность.

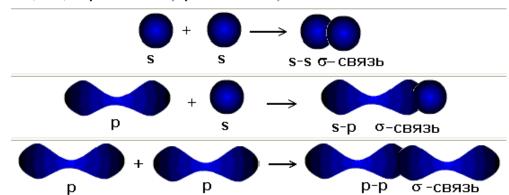

Изомеры — вещества, имеющие одинаковый качественный и количественный состав, но разные химические свойства.

1.2. Типы гибридизации атома углерода в органических соединениях

Основным элементом, определяющим строение, свойства и многообразие органических веществ является углерод.

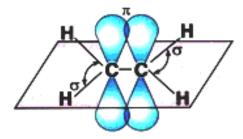

Углерод в органических соединениях находится в возбужденном состоянии, которое позволяет образовывать четыре ковалентных связи.

Пример:


При этом атомы углерода в органических молекулах (как друг с другом, так и с другими атомами) могут образовывать одну, две и три ковалентных связи.

Атом углерода по количеству образующихся ковалентных связей может быть:

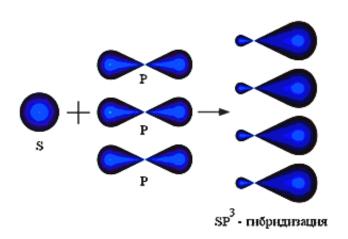
1.2.1. Способы перекрывания электронных орбиталей


С-С6ЯЗЬ образована при перекрывании атомных орбиталей по линии, соединяющей центры атомов (прочная связь).

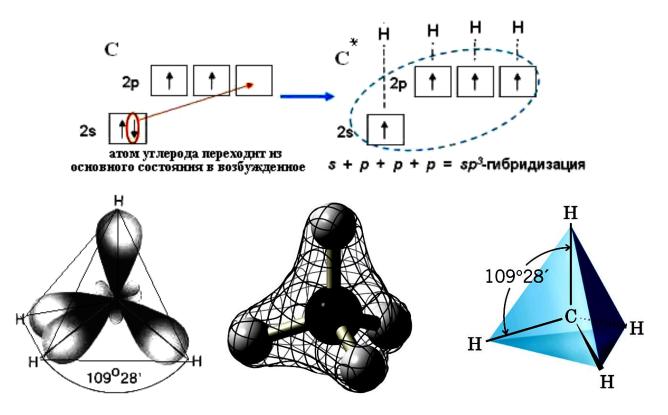
Орбитали, участвующие в образовании о-связи гибридизируются

 π -*Связь* образована при перекрывании атомных орбиталей вне линии, соединяющей ядра атома (непрочная связь). Может быть образована только при наличии σ -связи.

Пример:

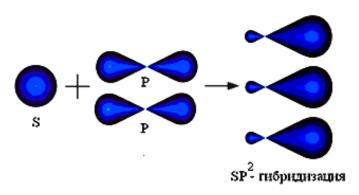

Орбитали, участвующие в образовании π-связи *негибридизируются*

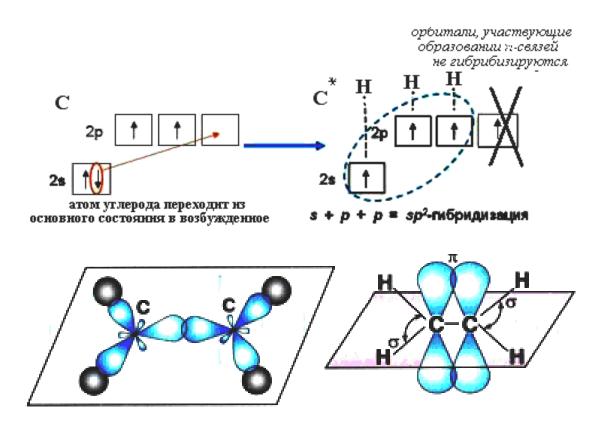
1.2.2. Типы гибридизации атомов углерода


При образовании ковалентных связей валентные орбитали атома углерода *гибридизируются* (т.е. усредняются по форме и энергии), что обеспечивает их максимальное перекрывание.

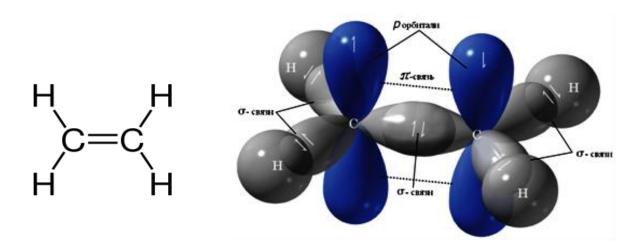
Пространственное строение органических молекул определяется типом гибридизации атома углерода. Углерод имеет три степени гибридизации.

Первое валентное состояние – sp³-гибридизация

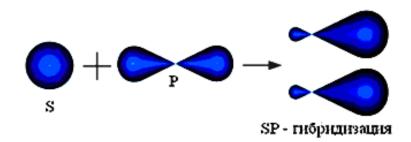

Молекула СН4 (метан)



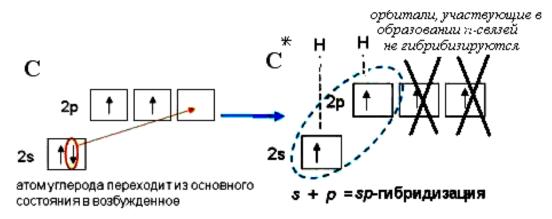
Пространственное строение молекулы метана

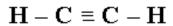

В состоянии $\rm sp^3$ -гибридизации атом углерода образует четыре σ -связи с четырьмя заместителями и имеет тетраэдричекую конфигурацию с валентными углами, $109,28^{\circ}$.

Второе валентное состояние – sp²-гибридизация

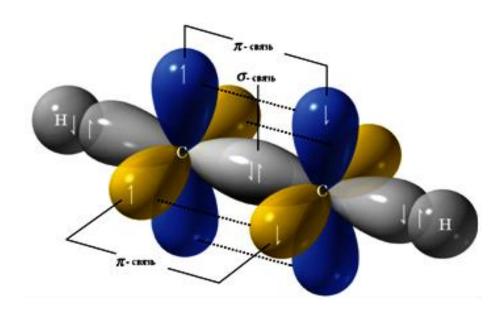

форма молекулы – плоский треугольник

Пространственное строение молекулы этена


В состоянии sp^2 -гибридизации атом углерода образует три σ -связи за счет гибридных орбиталей и одну π –связь. Форма молекулы – плоский треугольник, валентный угол – 120^{0} .


Третье валентное состояние углерода – sp-гибридизация

Молекула С2Н2_(ацетилен)


$$H - C \equiv C - H$$

две sp-гибридные орбитали

Пространственное строение молекулы этина (ацетилена)

В состоянии sp-гибридизации атом углерода образует две σ -связи за счет гибридных орбиталей и две π -связи за счет не участвующих в гибридизации p-орбиталей: Форма молекулы – линейная, валентный угол – 180° .

2. АЛКАНЫ

Алканы — это насыщенные (предельные, парафины) алифатические углеводороды, в молекулах которых все атомы углерода находятся в состоянии sp^3 гибридизации и связаны друг с другом только одинарными σ - связями.

Общая формула гомологического ряда алканов:

$$C_nH_{2n+2}$$

2.1. Способы получения алканов

Лабораторные способы

1. Гидрирование ненасыщенных углеводородов:

$$C_nH_{2n} + H_2 \xrightarrow{t,Pt} C_nH_{2n+2};$$
 алкан

$$C_n H_{2n-2} + \ 2H_2 \xrightarrow{t,Pt} C_n H_{2n+2};$$
 алкин алкан

2. Реакция металлорганических соединений с водой:

$$Al_4C_3 + 12H_2O \rightarrow 3CH_4\uparrow + 4Al(OH)_3$$

3. Восстановление производных алканов йодоводородной кислотой (синтез Бертло, 1868):

$$CH_{3}I + HI \rightarrow CH_{4} + I_{2}$$
 $CH_{3} - CH_{2} - OH + 2 HI \rightarrow CH_{3} - CH_{3} + H_{2}O + I_{2}$
 CH_{3} — $COOH + 6 HI \rightarrow CH_{3} - CH_{3} + 2 H_{2}O + 3 I_{2}$

4. Восстановление производных алканов активным водородом (водородом в момент выделения при взаимодействии, например цинка или амальгамы натрия с соляной кислотой):

$$CH_3 - CH_2 I + 2 [H] \rightarrow CH_3 - CH_3 + HI$$

 $CH_3 - CH_2 NH_2 + 2 [H] \rightarrow CH_3 - CH_3 + NH_3$

1 Восстановление альдегидов и кетонов (реакция Н.М.Кижнера):

$$CH_3 - C$$
 + $H_2N - NH_2 \rightarrow CH_3 - C$ H гидразин H гидразон ацетальдегида + H_2O

6. Взаимодействие галогенпроизводных алканов с натрием (реакция А. Вюрца):

$$2 R - Br + 2 Na \rightarrow R - R + 2 NaBr$$

где R – любой алкильный радикал.

Аналогично протекает реакция с некоторыми другими металлами, например с цинком:

$$2 R - I + 2 Zn \rightarrow ZnR_2 + ZnI_2$$

$$ZnR_2 + 2 R - I \rightarrow 2 R - R + ZnI_2$$

7. Из галогенпроизводных алканов через Мд- органические соединения:

$$CH_3 I + Mg \rightarrow CH_3 MgI$$

 $CH_3 MgI + H_2O \rightarrow CH_4 + Mg(OH)I$

7. Электролиз солей карбоновых кислот (реакция А. Кольбе): анион карбоновой кислоты окисляется на аноде, образуя CO_2 и свободный алкильный радикал, алкильные радикалы димеризуются на поверхности анода:

$$2 \text{ R}$$
—COONa + $2 \text{ H}_2\text{O} \xrightarrow{mo\kappa} \text{R} - \text{R} + 2 \text{ NaOH} + \text{H}_2 + 2 \text{ CO}_2$

9. Декарбоксилирование солей карбоновых кислот при нагревании в присутствии щелочей:

$$R$$
— $COONa + NaOH \xrightarrow{250-300^{\circ}C} R — H + Na2CO3$

2.2. Химические свойства алканов

Алканы относятся к наиболее инертным в химическом отношении веществам. Причиной химической устойчивости алканов является высокая прочность σ - связей C-C и C-H, а также неполярность связей C-C и очень низкая полярность связей C-H, что связано с небольшой разницей в электроотрицательности sp^3 -гибридизованного атома углерода и атома водорода. Кроме того, связи C-C и C-H характеризуются очень низкой поляризуемостью.

Неполярные и слабополярные связи между атомами углерода и водорода не проявляют склонности к гетеролитическому разрыву; эти соединения весьма устойчивы к действию (электрофильных и нуклеофильных) реагентов. Поэтому при обычных условиях алканы химически инертны. Они устойчивы к действию многих реагентов: не взаимодействуют с концентрированными кислотами, расплавленными щелочами, не окисляются сильными окислителями.

В то же время они способны расщепляться гомолитически при атаке активными свободными радикалами. В связи с этим наиболее характерными для алканов являются реакции радикального замещения (S_R) , протекающие в более или менее жёстких условиях: повышенная температура (часто реакцию проводят в газовой фазе), действие света или радиоактивного излучения, присутствие соединений — источников свободных радикалов (инициаторов), неполярные растворители.

1. Реакции радикального замещения

Реакции замещения водорода в алканах носят цепной характер и протекают по радикальному механизму через ряд основных стадий.

1 стадия: *зарождение цепи* (стадия инициирования) происходит в результате фотохимического (чаще всего под действием УФ-облучения), термического, радиационного или химического процессов, при которых образуются свободные радикалы (показано на примере симметричного реагента):

$$X: X \rightarrow X \cdot + \cdot X$$

На 2 стадии — стадии *роста цепи* образовавшийся радикал отрывает атом водорода с образованием нового радикала — Легкость образования алкильных радикалов и их относительная устойчивость увеличиваются в следующем порядке:

$$CH_3$$
• < RCH_2 • < R_2CH • < R_3C • метильный первичный вторичный третичный

Стабильность свободных радикалов возрастает

Чем стабильнее свободный радикал, тем легче и быстрее он образуется.

Полученные алкильные радикалы в свою очередь взаимодействуют с молекулами реагента X_2 , что приводит к возникновению продукта замещения RX и нового свободного радикала X^{\bullet} , который повторяет описанный цикл реакций:

$$R \cdot + X : X \rightarrow R - X + \cdot X$$

Таким образом, на каждой стадии генерируется радикал, что характерно для цепных реакций.

3 стадия - стадия *обрыва цепи* заключается в рекомбинации двух одинаковых или разных радикалов или же за счет реакций на стенках сосуда:

$$R \cdot + \cdot R \rightarrow R - R$$

 $R \cdot + X \cdot \rightarrow R - X$
 $X \cdot + \cdot X \rightarrow X - X$

Скорость замещения у третичных и вторичных атомов углерода в молекулах алканов выше, чем у первичных, что связано со стабильностью образующихся радикалов и подвижностью водородов под влиянием +I эффекта. В связи с этим реакции радикального замещения легче всего протекают у третичного атома углерода R_3C -H, затем у вторичного R_2CH -H и первичного R- CH_2 -H.

1.1. Галогенирование

Алканы активно взаимодействуют с фтором, реакция с хлором протекает при освещении. Взаимодействие с бромом осуществляется при освещении и нагревании. Йод с алканами реагирует лишь в присутствии окислителей (HgO, HNO_{3 (конц.)}).

$$CH_{3}-CH-CH_{3}+Br_{2}\xrightarrow{h\nu,127^{\circ}C}CH_{3}-C(CH_{3})-CH_{3}+HBr$$

$$| \qquad \qquad |$$

$$CH_{3}\qquad \qquad Br$$

1.2. Нитрование (реакция М.И.Коновалова)

$$R - H + HO-NO_2 \xrightarrow{130-140^{\circ} C} R - NO_2 + H_2O$$

$$CH_3 - CH_2 - CH_3 + HO-NO_2 \xrightarrow{130-140^{\circ}C} CH_3 - CH - CH_3 + H_2O$$
NO₂
2-нитропропан

1.3. Сульфохлорирование

$$R - H + SO_2 + Cl_2 \xrightarrow{h\nu} R - SO_2Cl + HCl$$

Реакция протекает при комнатной температуре.

1.4. Сульфоокисление

$$R-H+SO_2+rac{1}{2}O_2 \xrightarrow{hv} R-SO_3H$$
 алкансульфоновая кислота

2. Реакция изомеризации

Изомеризация алканов — это реакция, связанная с перестройкой углеродного скелета молекулы. Превращение алкана в его изомеры происходит при нагревании с кислотами Льюиса (AlCl₃, AlBr₃):

$$CH_3 - CH_2 - CH_2 - CH_3 \xrightarrow{AlBr_3, 50-200^{\circ}C} CH_3 - CH_2 - CH_3$$

$$CH_3 - CH_2 - CH_3 \xrightarrow{CH_3} CH_3 - C$$

3. Термические превращения алканов

При высоких температурах все алканы подвергаются более или менее глубокому распаду с разрывом связей C-C и C-H. Состав продуктов зависит от условий (температуры, давления, продолжительности нагревания, наличия или отсутствия катализатора) и от природы углеводорода.

Термический распад углеводородов, протекающий без разрыва углеродуглеродной цепи, носит название *пиролиза*.

Метан начинает разлагаться при 800°С. При нагревании до 1400-1500°С в течение долей секунд и резком охлаждении образуется ацетилен:

2CH₄
$$\xrightarrow{1500^{\circ} C, oxл.}$$
 CH≡CH + 3H₂ ацетилен

Выше 1600°C, а также при длительном нагревании до 800 –1600°C метан распадается на углерод и водород:

$$CH_4 \xrightarrow{1600^{\circ} C} C + H_2$$

Химические реакции, протекающие с разрывом углерод-углеродных связей в молекулах углеводородов, называются *крекингом*. При крекинге происходит гомолитический разрыв связей C-C, который протекает при нагревании без доступа воздуха и под действием катализаторов.

Различают термический и каталитический крекинги и риформинг.

Термический крекинг проводят под давлением при 450-700°С. При этом образуется, в основном, смесь более низкомолекулярных алканов и алкенов:

$$C_8H_{18} \xrightarrow{450-700^{\circ}C} C_4H_{10} + C_4H_8$$

Каталитический крекинг ведут при температуре $450\text{-}500^{\circ}\mathrm{C}$ в присутствии катализаторов — $\mathrm{AlCl_3}$ или алюмосиликатов. В этом случае наряду с реакциями крекинга идут и реакции изомеризации, причём непредельных углеводородов образуется в меньшем количестве:

$$CH_{3} - CH_{2} - CH_{2} - CH_{3} \xrightarrow{450-500^{\circ} C} CH_{2} = CH_{2} + CH_{3} - CH_{3}$$

$$CH_{3} - CH_{2} - CH_{2} - CH_{3} \xrightarrow{450-500^{\circ} C} CH_{3} - CH_{2} - CH_{2}$$

$$CH_{3} - CH_{2} - CH_{2} - CH_{3} \xrightarrow{CH_{3}} CH_{3} - CH_{3} - CH_{3}$$

Риформинг (каталитическое облагораживание) проводится при нагревании с применением платиновых катализаторов. В этом случае алканы превращаются, в основном, в ароматические углеводороды.

4. Реакции окисления

В промышленности алканы окисляют кислородом воздуха на марганцевых катализаторах при температуре около 200°С. При этом расщепляются С – С связи и образуются низкомолекулярные кислородсодержащие соединения – спирты, альдегиды, кетоны, карбоновые кислоты:

$$\mathbf{R} - \mathrm{CH}_2 - \mathrm{CH}_2 - \mathbf{R} + \mathrm{O}_2 \xrightarrow{\kappa am.} \mathbf{R} - \mathrm{CH}_2\mathrm{OH}$$
 $\mathbf{R} - \mathrm{CH} = \mathrm{O}$
 $\mathbf{R} - \mathrm{COOH}$

В промышленности широко используется окисление бутана до уксусной кислоты:

$$CH_3 - CH_2 - CH_2 - CH_3 + [O] \xrightarrow{\kappa am.} 2 CH_3 - COOH$$

В присутствии кислорода алканы легко сгорают с образованием ${\rm CO_2}$ и ${\rm H_2O}$ и выделением большого количества теплоты. Смеси алканов с воздухом или кислородом взрывоопасны.

2.3. Задания для самоконтроля по теме «Алканы»

			ажается общей ф C_nH_{2n+2}			4)	СЧ		
1)	C_nH_{2n}	2)	$C_n\Pi_{2n+2}$	3)	$C_n\Pi_{2n-2}$	4)	C_nH_{2n-6}		
	2. Алканом является вещество, формула которого								
1)	C_4H_8	2)	$C_{22}H_{46}$	3)	C_8H_{10}	4)	C_6H_6		
3. 0	3. Формулы только алканов записаны в ряду:								
1)	C_2H_2 , C_2H_4 , C_2I_4	H_6		3)	C_2H_6 , C_3H_6 , C_4I	H_8			
2)	C_2H_2 , C_3H_4 , C_4	H_6		4)	C_2H_6 , C_3H_8 , C_4I	H_{10}			
4. I	В молекулах алк	аноі	в атомы углерода	а на	ходятся в состоя	нии	гибридизации		
1)	sp	2)	sp^2	3)	sp ³	4)	$\mathrm{sp}^2\mathrm{d}$		
	Валентный угол вны:	1 и	длина связи С-	Св	молекулах алк	ано	в соответственно		
-	120° и 0,154 нм				120° и 0,134 нм				
2)	180° и 0,120 нм			4)	109°28′ и 0,154	HM			
6. 3	Зигзагообразное	стр	оение в простран	ІСТВ	е имеет молекул	a			
1)	метана	2)	этана	3)	гексана	4)	циклопропана		
7. I	Молекула бутана	а им	еет строение						
1)	линейное			-	зигзагообразно	e			
2)	циклическое			4)	плоское				
8. I	Изомерами явля	отся	Ā						
	пропан и бутан				бутан и 2-метил	_			
2)	бутан и циклоб	утаі	H	4)	метилпропан и	2-м	етилбутан		
9. Число изомеров алкана C_5H_{12} равно:									
1)	2	2)	3	3)	4	4)	5		
10. Газообразным веществом при нормальных условиях не является									
1)	метан		бутан		гексан	4)	пропан		

	_		жением метана м сажу		_	4)	OTOH	
1)	хлорметан	2)	сажу	3)	этанол	4)	Этан	
12.	Реакция Конова	алов	а - это взаимодей	йсте	вие алкана с			
1)	1) водой			3)	раствором серн	ой к	сислоты	
2)	 водои раствором азотной кислоты 			4)	бромной водой			
13.	При хлорировал	нии	метана можно по	олуч	НИТЬ			
			хлороформ	-		4)	хлоропрен	
1.4	П	J						
	Пропан взаимо; HCl			3)	Br_2	4)	H_2O	
1)	1101	2)	112	3)	DI ₂	7)	1120	
	Гексан не взаи							
1)	Cl_2	2)	O_2	3)	HBr	4)	HNO_3	
16.	В промышленн	ости	иметан получаю [,]	г из				
	ацетата натрия				карбида кальци	Я		
2)	каменного угля	I		4)	природного газ	a		
17	При гипропизе	vanê	бида алюминия с	กับล	OMOTOG			
		_	лида алюминия с линия	_	_	л ал	юминия	
					4) ацетилен и гидроксид алюминия			
10	D							
18.	В схеме превраг	щен	ии Al ₄ C ₃ > СН	I .	$+X_2$ CH-NO-			
			. 3	•	. 3 2			
веп	цествами X_1 и X	2 CO	ответственно явл	ORI	гся			
	H_2O и N_2				Al(OH) ₃ и HNO	3		
2)	H_2 и N_2O_5			4)	H ₂ O и HNO ₃			
19.	В схеме превра	шен	ий					
19. В схеме превращений $CH_4 \xrightarrow{+X_1} CH_3C1 \xrightarrow{+X_2} C_2H_6$								
веп	пествами Хти Х	2 CO	ответственно явл					
		.2 00	orbererbeiling abs					
	HCl и Na Cl ₂ и Na				Cl ₂ и C ₂ H ₂ NaCl и C ₂ H ₄			
2)	C12 H IVa			7)	14aC1 // C2114			
20.	В схеме превраг							
		C]	H_3 COONa $\xrightarrow{+X_1}$	• CI	$H_4 \xrightarrow{+X_2} CH_3B_1$	r		
вец	цествами X_1 и X	2 CO	ответственно явл	ТЭК	гся			
1)	NaOH и HBr			3)	Al(OH) ₃ и HBr			
2)	NaOH и Br ₂				Al(OH) ₃ и Br ₂			

21. В схеме превращений

$$X_1 \xrightarrow{+Na} C_2H_6 \xrightarrow{400\,^{0}\text{C, Cr}_2\text{O}_3} X_2$$

веществами X_1 и X_2 соответственно являются

1) CH₃Cl и C₂H₄

3) C₂H₄ и CO₂

2) CH₃Cl и C

4) CH₄ и C₆H₆

22. В схеме превращений

$$CH_3 - CH = CH_2 \xrightarrow{+X_1} CH_3 - CH_2 - CH_3 \xrightarrow{+Br_2} X_2$$

веществами X_1 и X_2 соответственно являются

- H₂O и CH₃ CHBr CH₂Br
 H₂ и CH₃ CHBr CH₃
 H₂ и CH₃ CHBr CH₃
 H₂O и CH₃ CH₂ CH₂Br
 H₂O и CH₃ CH₂ CH₂Br

23. В схеме превращений

$$CO \xrightarrow{+H_2} X_1 \xrightarrow{+X_2} C_2H_5I$$

веществами X_1 и X_2 соответственно являются

1) C₂H₆ и HI

3) C₂H₅OH и KI

2) C₂H₆ и I₂

4) C₂H₄ и I₂

24. Какие из приведенных утверждений об алканах и их свойствах верны?

А. В молекулах алканов атомы углерода соединены между собой только освязями.

Б. Качественной реакцией на алканы является обесцвечивание бромной воды.

- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны

25. Какие из приведенных утверждений об алканах и их свойствах верны?

А.В молекулах алканов все связи атома углерода направлены к углам тетраэдра.

Б. Для алканов характерны реакции присоединения.

- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны

26. Какие из приведенных утверждений об алканах и их свойствах верны?

А. Алканы хорошо растворимы в воде.

Б. Для алканов наиболее характерны реакции замещения.

- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения

- 4) оба утверждения неверны
- 27. Какие из приведенных утверждений об алканах и их свойствах верны?
- **А.** Общая формула алканов C_nH_{2n+2} .
- Б. При обычных условиях алканы обесцвечивают раствор перманганата калия.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны
- 28. Какие из приведенных утверждений об алканах и их свойствах верны?
- А. Для алканов характерна структурная изомерия углеродного скелета.
- **Б.** Основными природными источниками алканов являются нефть и природный газ.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны
- 29. Какие из приведенных утверждений об алканах и их свойствах верны?
- **А.** Алканы имеют молекулярное строение и молекулярную кристаллическую решетку.
- Б. Реакция нитрования алканов протекает по радикальному механизму.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны
- 30. Какие из приведенных утверждений о метане и его свойствах верны?
- А. В лаборатории метан можно получить путем гидролиза карбида алюминия.
- Б. Пиролиз метана используют для получения сажи.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны
- 31. Какие из приведенных утверждений об алканах и их свойствах верны?
- **А.** В молекулах алканов атомы связаны только одинарными связями.
- Б. Метан используется для получения ацетилена.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны
- 32. Метан можно получить, используя

- 1) гидролиз карбида кальция
- 2) гидролиз карбида алюминия
- 3) реакцию Вюрца
- 4) сплавление ацетата натрия с гидроксидом натрия
- 5) электролиз раствора ацетата натрия
- 6) синтез-газ

33. Этан можно получить, используя

- 1) гидролиз карбида кальция
- 2) гидролиз карбида алюминия
- 3) реакцию Вюрца
- 4) сплавление пропионата натрия с гидроксидом натрия
- 5) электролиз раствора ацетата натрия
- 6) реакцию Коновалова

34. Для алканов характерны

- 1) хорошая растворимость в воде
- 2) sp-гибридизация атомов углерода
- 3) наличие только о-связей между атомами в молекулах
- 4) реакции замещения
- 5) горение на воздухе
- 6) обесцвечивание бромной воды

35. Для метана характерны

- 1) плохая растворимость в воде
- 2) плоское строение молекулы
- 3) наличие водородных связей между молекулами
- 4) образование взрывоопасных смесей с воздухом
- 5) реакции замещения
- 6) реакция дегидратации

36. Для гептана характерны

- 1) зигзагообразное строение молекулы
- 2) наличие сильно полярных связей между атомами в молекуле
- 3) жидкое агрегатное состояние
- 4) реакция дегидрирования
- 5) горение на воздухе бесцветным пламенем
- 6) обесцвечивание раствора перманганата калия

37. И для этана, и для гексана характерны

- 1) sp³-гибридизация атомов углерода
- 2) отсутствие запаха
- 3) газообразное агрегатное состояние
- 4) валентный угол 109°28′
- 5) реакция дегидрирования
- 6) изомеризация в присутствии катализатора

24

3. АЛКЕНЫ

Алкены — это ненасыщенные алифатические углеводороды, в молекулах которых два атома углерода находятся в состоянии sp^2 -гибридизации и связаны друг с другом двойной связью, которая является сочетанием σ - и π - связей.

Общая формула гомологического ряда алкенов:

C_nH_{2n}

3.1. Способы получения алкенов

Алкены являются ценным сырьём для промышленного органического синтеза. В природе они практически не встречаются, поэтому разработано много способов получения алкенов различного строения.

Промышленные способы

1. Крекинг алканов:

$$CH_3 - CH_2 - CH_2 - CH_3 \xrightarrow{450-500^{\circ} C} CH_2 = CH_2 + CH_3 - CH_3$$

2. Дегидрирование и расщепление алканов:

$$CH_3 - CH_2 - CH_2 - CH_3 \xrightarrow{450-500^{\circ}C} CH_3 - CH = CH - CH_3 + H_2$$

Лабораторные способы

- 1. Дегидратация спиртов
- а) при нагревании в присутствии сильных кислот:

$$CH_3 - CH_2 - OH \xrightarrow{H_2SO_4, t > 180^0} CH_2 = CH_2 + H_2O$$

б) при повышенной температуре на катализаторе:

$$CH_3CH_2 CH_2OH \xrightarrow{Al_2O_3,300-350^0C} CH_3CH = CH_2 + H_2O$$

- 2. Отщепление галогеноводородов от галогенпроизводных алканов
- а) при действии спиртовых растворов щелочей:

 CH_3CH_2 $CH_2Br + NaOH \xrightarrow{C_2H_5OH}$ $CH_3CH = CH_2 + NaBr + H_2O$ б) при нагревании:

$$CH_3CH_2 CH_2C1 \xrightarrow{\iota^0} CH_3CH = CH_2 + HC1$$

- 3. Отщепление галогенов от дигалогенпроизводных алканов
- а) от соседних атомов углерода:

$$CH_2Br - CH_2Br + Zn_{(пыль)} \xrightarrow{r^0} CH_2 = CH_2 + ZnBr_2$$

б) от одного атома углерода:

$$2 \text{ CH}_3 - \text{CHCl}_2 + 2 \text{ Hg} \xrightarrow{\iota^0} \text{CH}_3 - \text{CH} = \text{CH} - \text{CH}_3 + 2 \text{ HgCl}_2$$

4. Гидрирование диенов и алкинов

$$CH_2 = CH - CH = CH_2 + H_2 \xrightarrow{t,Pt} CH_3 - CH = CH - CH_3$$

$$CH_3 - C = CH - CH_3 + H_2 \xrightarrow{t,Pt} CH_3 - CH = CH - CH_3$$

5. Пиролиз сложных эфиров

$$CH_3 - C (O) - O - CH_2CH_3 \xrightarrow{400-500^0 C} CH_3 - COOH + CH_2 = CH_2$$

3.2. Химические свойства

Как ненасыщенные соединения этиленовые углеводороды значительно более реакционноспособны, чем алканы. Реакционная способность алкенов непосредственно связана с наличием в молекуле двойной углерод-углеродной связи, являющейся сочетанием ковалентных σ- и π-связей.

Двойная связь, как комбинация σ - и π -связей, более прочная, чем обычная одинарная связь. π -электроны двойной связи более доступны действию реагентов извне, так как в отличие от σ -электронов расположены на некотором удалении от ядер (максимальная электронная плотность концентрируется на некотором расстоянии над и под плоскостью σ -связей).

Будучи более удалёнными от ядер, π-электроны легко поляризуются, поэтому алкены, являясь основаниями Льюиса (доноры электронов) и нуклеофилами, легко взаимодействуют с электрофильными реагентами —

акцепторами электронов (кислоты Льюиса). Они также реагируют с нейтральными радикалами, но достаточно инертны к нуклеофильным реагентам.

Учитывая ненасыщенный характер алкенов, можно полагать, что наиболее характерными для них являются реакции присоединения электрофильного (A_E) и радикального (A_R) характера, а также реакции полимеризации и окисления.

1. Реакции электрофильного присоединения

На первой стадии происходит взаимодействие электрофильной частицы с электронным облаком π -связи. Положительно заряженная электрофильная частица за счёт электростатического притяжения образует с молекулой алкена π - комплекс. В качестве электрофильной частицы чаще всего выступает протон H^+ , источником которого являются протонсодержащие кислоты HCl, HBr, H_2SO_4 . Затем образуется ковалентная связь между протоном и одним из атомов углерода двойной связи. Этот атом углерода переходит в состояние sp³-гибридизации. Второй атом углерода приобретает положительный заряд, и вся частица становится карбокатионом. Это медленная стадия, определяющая скорость процесса в целом:

$$H^+$$
 + >c=c \longrightarrow $\xrightarrow{H^+}$ $\xrightarrow{C^+}$ $\xrightarrow{\pi^-$ комплекс карбокатион

На второй стадии процесса карбокатион взаимодействует с анионом X^- и образует с ним σ -связь за счёт пары электронов аниона:

Присоединение реагентов типа HX (H_2O , H_2SO_4 , HCl, HBr, HI, HOCl и др.) к несимметричным алкенам может протекать по двум направлениям с образованием разных конечных продуктов:

$$R - CH = CH_2 + HX$$
 \longrightarrow $R - CHX - CH_3$ \longrightarrow $R - CH_2 - CH_2X$

1.1. Гидрирование

$$CH_2 = CH - CH_2 - CH_3 + H_2 \xrightarrow{t,Pt} CH_3 - CH_2 - CH_2 - CH_3$$

1.2. Галогенирование

$$CH_3 - CH = CH_2 + Br_2 \xrightarrow{CCl_4, 20^{\circ} C} CH_3 - CHBr - CH_2Br$$

Наиболее энергично присоединяется хлор, труднее всего – йод.

Раствор брома в воде или тетрахлорметане имеет бурую окраску, продукты присоединения брома бесцветны, поэтому реакция присоединения брома (обесцвечивание бромной воды) – качественная реакция на двойную и тройную связь.

1.3. Гидрогалогенирование

К двойной связи могут присоединяться все галогеноводороды. Реакционная способность галогеноводородов увеличивается с повышением кислотности (электрофильности) в ряду HF < HCl < HBr < HI.

$$CH_2 = CH_2 + HBr \rightarrow CH_3 - CH_2Br$$

Присоединение галогеноводородов к несимметричным алкенам с электродонорными заместителями протекает селективно по правилу Марковникова:

$$CH_3 - CH = CH_2 + HBr \rightarrow CH_3 - CHBr - CH_3$$

1.4. Присоединение серной кислоты

При взаимодействии алкенов с концентрированной серной кислотой образуются моноалкилсульфаты (гидросульфаты), реакция протекает при комнатной температуре:

$$CH_2 = CH_2 + H - OSO_3H$$
 $\xrightarrow{20^{\circ} C}$ $CH_3 - CH_2OSO_3H$ моноэтилсульфат

Ещё легче вступают в эту реакцию замещённые алкены.

1.5. Гидратация

Вода является слабым электрофилом и непосредственно, без катализатора, не присоединяется к алкенам. Для осуществления реакции необходимо присутствие каталитических количеств сильной кислоты (серной, азотной, хлорной). Вследствие высокой степени диссоциации кислоты в водном растворе создаётся необходимая концентрация протонов, являющихся электрофильными реагентами. Реакция протекает в соответствии с правилом Марковникова через образование промежуточного соединения с серной кислотой.

$$CH_3 - CH = CH_2 + H - OSO_3H \longrightarrow CH_3 - CH - CH_3$$
 OSO_3H изопропилсерная кислота

$$CH_3 - CH - CH_3 + H - OH \longrightarrow CH_3 - CH - CH_3 + H_2SO_4$$

$$\begin{vmatrix} OSO_3H & OH \\ & \Piponahon-2 \end{vmatrix}$$

Эту реакцию можно осуществить и в газовой фазе, но при высоких температуре и давлении, а также при наличии катализаторов (Al_2O_3 , $ZnCl_2$ и др.).

1.5. Гипохлорирование:

$$CH_3 - CH = CH_2 + HOCl \rightarrow CH_3 - CH - CH_2$$
 ($Cl_2 + H_2O$) | | OH Cl 1-хлорпропанол-2 (пропиленхлоргидрин)

Вследствие большей электроотрицательности атома кислорода по сравнению с атомом галогена электрофильным центром реагента является атом галогена $HO \leftarrow Cl$, $HO \leftarrow Br$.

1.6. Присоединение спиртов (в присутствии сильных кислот)

$$CH_3 - CH = CH_2 + CH_3O - H$$
 $\xrightarrow{H_2SO_4}$ $CH_3 - CH - CH_3$ OCH₃

1.7. Присоединение карбоновых кислот (в присутствии сильных кислот)

$$CH_3 - CH = CH_2 + CH_3 - C$$

OH

 $CH_3 - CH - CH_3$
 $O - CO - CH_3$

изопропилацетат

2. Реакции радикального присоединения

В присутствии пероксида водорода или пероксида бензоила бромоводород на свету присоединяется к несимметричным алкенам против правила Марковникова:

$$CH_3 - CH = CH_2 + HBr \xrightarrow{H_2O_2} CH_3 - CH_2 - CH_2Br$$

Такое аномальное направление реакции было названо *пероксидным* эффектом М. Хараша. Установлено, что в отсутствие пероксидов и при наличии в реакционной смеси ингибиторов радикальных процессов (ловушек свободных радикалов, например, гидрохинона) присоединения НВг к алкенам происходит по правилу Марковникова, а в присутствии пероксидов – против правила Марковникова.

Реакция радикального присоединения протекает как цепной процесс. Инициатор — пероксид водорода или пероксид бензоила — генерирует радикал брома, который атакует алкен с образованием алкильного радикала. Алкильный радикал реагирует с НВг, образуя конечный продукт с более прочной связью С — Н, а не с С — Вг. Атом брома участвует в следующем цикле роста цепи. Обрыв цепи включает различные типы взаимодействия между радикальными частицами:

Инициирование цепи

$$ROOR \xrightarrow{h\nu} RO \bullet + \bullet OR$$

Pocm uenu

$$RO \bullet + HBr \rightarrow ROH + \bullet Br$$

$$CH_3 - CH = CH_2 + \bullet Br \times CH_3 - CH - CH_2Br (A)$$
 $CH_3 - CH - CH_2Br (A)$
 $CH_3 - CH - CH_2Br (A)$
 $CH_3 - CH - CH_2Br (A)$

$$CH_3 - CH - CH_2Br + HBr \rightarrow CH_3 - CH_2 - CH_2Br + \bullet Br$$

Обрыв цепи

$$Br \cdot + \cdot Br \rightarrow Br_2$$

Хлороводород и йодоводород не присоединяются к алкенам по радикальному механизму.

3. Реакции радикального аллильного замещения

В ненасыщенных соединениях наряду с двойной углерод-углеродной связью содержатся и алкильные группы. Поэтому в условиях, способствующих радикальным реакциям, можно осуществить замещение водорода на галоген в алкильной группе ненасыщенного соединения. В этих реакциях наиболее легко замещаются атомы водорода в аллильном положении, т.е. у соседнего с двойной связью атома углерода. Двойная связь оказывает влияние на реакционную способность соседней алкильной группы. Отрыв водорода из аллильного положения ведёт к образованию стабильного аллильного радикала. Например, хлорирование пропилена при 400°C используется в промышленном синтезе глицерина:

$$U$$
нициирование
$$Cl_2 \xrightarrow{h\nu} Cl \bullet + \bullet Cl$$

$$Pocm \ \textit{цепи}$$

$$Cl \bullet + CH_3 - CH = CH_2 \rightarrow HCl + \dot{C}H_2 - CH = CH_2$$

$$\dot{C}H_2 - CH = CH_2 + Cl_2 \rightarrow CH_2 - CH = CH_2 + Cl \bullet$$

$$Cl$$

4. Реакции полимеризации

Полимеризацию можно рассматривать как особый случай реакции присоединения, когда молекула алкена последовательно присоединяет по двойной связи другие молекулы того же или иного алкена.

Полимеризация — это процесс образования высокомолекулярного вещества (полимера) путём соединения молекул низкомолекулярного вещества (мономера), протекающий без изменения химического состава и не сопровождающийся образованием побочных продуктов.

Полимеры, полученные из олефинов, называются полиолефинами.

По конечному продукту различают *цепную линейную* полимеризацию, которая обеспечивает получение высокомолекулярного продукта со степенью полимеризации от нескольких сотен до тысяч, и ступенчатую, при которой степень полимеризации невысока (равна 2-7), продуктами являются ди-, три-, тетрамеры. В зависимости от типа активных частиц, участвующих в реакции, различают радикальную и ионную (катионную, анионную) полимеризации.

По радикальному механизму полимеризуются этилен, пропилен, тетра- и трифторэтилен, винилхлорид, стирол, винилацетат, метилакрилат, метилметакрилат, акрилонитрил и др.

В зависимости от способа возбуждения радикалов мономера радикальная полимеризация может быть:

- инициированная (под действием инициаторов);
- термическая (воздействие высокой температуры);
- фотополимеризация (воздействие УФ);
- радиационная.

Примеры:

$$n$$
CH = CH₂ $\xrightarrow{\text{УФ-свет, R}}$ (...-CH-CH₂-...)_n R

 n CH = CH₂ $\xrightarrow{\text{УФ-свет, R}}$ (...-CH-CH₂-...)_n R

 n CH = CH₂ $\xrightarrow{\text{УФ-свет, R}}$ (...-CH-CH₂-...)_n полистирол полистирол СТИРОЛ

 n CH = CH₂ $\xrightarrow{\text{УФ-свет, R}}$ (...-CH-CH₂-...)_n Поливинилхлорид ВИНИЛХЛОРИД (ПВХ)

5. Реакции окисления

5.1. Мягкое окисление (реакция Вагнера)

Алкены легко окисляются раствором перманганата калия на холоду в нейтральной или слабощелочной среде. Эту реакцию используют как качественную пробу на кратную связь, так как в ходе реакции розово-

фиолетовая окраска перманганат-иона исчезает и выпадает коричневый осадок оксида марганца (IV):

5.2. Эпоксидирование

Окисление алкенов в эпоксиды в лабораторных условиях осуществляют под действием пероксикислот — пероксибензойной, *м*-хлорпероксибензойной, пероксиуксусной, пероксимуравьиной:

$$CH_{3} - CH = CH - CH_{3} + C_{6}H_{5} - C$$
 \rightarrow $O - OH$ пероксибензойная кислота \rightarrow $CH_{3} - CH - CH - CH_{3} + C_{6}H_{5} - COOH$

Этиленоксид получают каталитическим окислением этилена кислородом воздуха:

$$CH_2 = CH_2 + O_2 \xrightarrow{Ag,300^{\circ}C} CH_2 - CH_2$$

5.3. Озонирование

Большинство *алкенов* взаимодействуют с озоном даже при низких температурах. Образующиеся *озониды* содержат пероксидную группу —О— О— и поэтому крайне неустойчивы (при неосторожном обращении взрываются). Пероксидную группу легко гидролизуют в присутствии цинка с образованием карбонильных соединений, которые обычно легко выделяются и идентифицируются. Эта последовательность реакций позволяет установить местоположение двойной связи в алкене:

$$CH_3$$
— CH_2 — CH_2 — CH_2 — CH_3 — CH_2 —

Цинк добавляют для удаления H₂O₂, который может реагировать с альдегидами.

5.4. Жёсткое окисление

Двойные углерод-углеродные связи расщепляются под действием сильных окислителей при нагревании (перманганат калия, дихромат калия в кислой среде, оксид хрома (VI), азотная кислота). При жёстком окислении вместо альдегидов образуются карбоновые кислоты. Концевая метиленовая группа CH_2 = окисляется в CO_2 , третичные атомы углерода кратной связи окисляются в карбонильную группу C = O:

$$CH_3 - CH = CH - CH_3 \xrightarrow{KMnO_4, H^+, t^{\circ}C} 2 CH_3 - C$$

$$OH$$

5.5. Окисление в присутствии солей палладия

$$CH_2 = CH_2 + PdCl_2 + H_2O \rightarrow CH_3 - C + Pd + 2 HCl$$

5.6. Горение

Алкены (как и алканы) на воздухе или в кислороде горят светящимся пламенем с образованием углекислого газа и воды:

$$CH_2 = CH_2 + 3O_2 \rightarrow 2CO_2 + 2 H_2O$$

3.3. Задания для самоконтроля по теме «Алкены»

- 1. Состав алкенов выражается общей формулой
- 1) C_nH_{2n}
- 2) C_nH_{2n+2}
- 3) C_nH_{2n-2} 4) C_nH_{2n-6}

	Рормулы только		енов могут бы						
-	C_2H_2 , C_2H_4 , C_2H				C_2H_4 , C_3H_6 , C_4				
2)	2) C_2H_2 , C_3H_4 , C_4H_6			4)	C_6H_6 , C_3H_8 , C_4H_{10}				
3. E	В молекуле этил	ена	атомы углерол	та нахо	одятся в состо	янии г	ибридизации		
1)	<u>-</u>		sp^2		sp^3		sp^2d		
,	-1	,	- r	- /	- r	,	-r		
	В молекуле 2 ридизации	-ме	гилбутена-1	атомы	углерода на	аходят	ся в состоянии		
	только sp^3	2)	только sp^2	3)	sp^3 и sp^2	4)	sp^3 и sp		
-	=		_	-		-	ода в молекуле		
	опена		,		·	J 1	,		
_	$sp^2 - sp - sp^3$			3)	$sp^2 - sp^2 - sp^3$				
	$sp - sp^2 - sp$				$sp^3 - sp^2 - sp$				
,	1 1 1			,					
6. I	Тоследовательно	ость		изации sp² – sp		ода			
111.14	еется в молекуле	.	sp – s	ър – s p	- sp				
	$CH_3 - CH_2 - C$		- CH.	3)	$CH_3 - CH_2 -$	CH=C	Ц.		
	$CH_3 - CH_2 - C$			/					
<i>2)</i>	C113 - C112 - C	HCI	— C113	4)	C113 — C11–C1	11 — C1	113		
7. I	Изомером углево	дор		_	ого I — CH ₃ ,				
					1 (113,				
				ĊH	I ₂				
ЯRП	яется			CI	1,				
	бутен-1			3)	2-метилпенте	ш_3			
	3-метилпентен-	.1		· ·	пентен-1	11-5			
2)	J-MCTUIIICHTCH-	- 1		4)	IICHICH-I				
8 T	Іространствення	Je 11	<i>ис-тпанс-</i> изом	мепы и	меет				
	2,3-дихлорбуте		ue inpune nsor	-	мест 2-метилбутен	-2			
-	2,3-диклороутс 2,3-диметилбут		1		1,1-дихлорбу [*]				
2)	2,3-диметилоут	CH-	l	4)	1,1-дихлороу	1CH-1			
0 N	Леханизм реакц і	ии в	ранио пайстви. В панка пайстви	а бром	шой воли с эт	ιλπαιισι	ΔÆ		
1)	исханизм реакці замещения, рад				замещения, и				
<i>2)</i>	присоединения	, pa,	цикальныи	4)	присоединени	ия, ион	ныи		
10	Пропец на вету	тоо	T D DANKIIIIO C						
	Пропен <u>не всту</u> водой		водородом	2)	бромом	4)	MOTOLIOM		
1)	водои	2)	водородом	3)	бромом	4)	метаном		
11	11. Как этен, так и этан взаимодействуют с								
				•		4)	НІ		
1)	H_2	<i>2)</i>	Br_2	3)	H_2O	4)	111		
12.	Бутен-2 в отлич	ие с	от бутена-1						

1) имеет π-связь между атомами углерода 2) образует *цис-транс*-изомеры 3) плохо растворяется в воде 4) способен обесцвечивать водный раствор перманганата калия 13. Превращение $C_3H_6 \rightarrow C_3H_8$ осуществляется с помощью реакции 1) гидратации 3) гидрирования 2) дегидратации 4) дегидрирования 14. Превращение $C_2H_4 \rightarrow C_2H_5OH$ осуществляется с помощью реакции 1) гидратации 3) гидрирования 2) дегидратации 4) дегидрирования 15. Превращение $C_2H_4 \rightarrow CH_2OH - CH_2OH$ осуществляется с помощью реакции 1) Гидратации 2) окисления водным раствором КМпО₄ 3) Гидрирования 4) Дегидрирования 16. Химическое равновесие в системе $C_3H_{6(r)} + H_{2(r)} \rightleftharpoons C_3H_{8(r)} + Q$ можно сместить в сторону образования пропана при одновременном 1) увеличении температуры и уменьшении давления 2) уменьшении температуры и уменьшении давления 3) увеличении температуры и увеличении давления 4) уменьшении температуры и увеличении давления 17. Продуктом реакции пропена с бромной водой является 1,1-дибромпропан 1,2-дибромпропен 2) 2-бромпропен 4) 1,2-дибромпропан 18. При взаимодействии пропена с бромоводородом преимущественно

3) 2,2-дибромпропан4) 1,2-дибромпропан

образуется

1-бромпропан

2) 2-бромпропан

19. В результате реакции гидратации бу	
 бутанол-1 бутанол-2 	3) бутандиол-1,24) бутаналь
2) Oylullosi 2	1) Oylullaib
20. При окислении алкенов водным рас	
1) одноатомные спирты	3) двухатомные спирты
2) альдегиды	4) карбоновые кислоты
21. Мономером для получения поли которого	пропилена служит вещество, формула
1) $CH_3 - CH_2 - CH_3$	3) CH ₂ =CH ₂
2) CH ₂ =C=CH ₂	4) $CH_2=CH-CH_3$
22. «Против» правила Марковникова пр 1) CH ₂ = CH — CH ₃ + HBr → 2) CH ₂ =CH — CH ₃ + H ₂ O → 3) CHCl=CH — CH ₃ + HCl → 4) CH ₂ =CH — CH ₂ F + HCl →	оотекает реакция, схема которой
23. Поливинилхлорид получают в резул	тытате реакции
1) этерификации	3) полимеризации
2) поликонденсации	4) изомеризации
24. Для получения этилена в лаборатор1) дегидрирования этана2) дегидратации этанола3) гидрирования ацетилена4) термического разложения метана	ии используют реакцию
25. Реакцией дегидрирования этилен мо	ожно получить из
1) этанола 2) этина	3) хлорэтана 4) этана
26. В результате реакции дегидрогалого растворе щелочи образуется преимущест) бутадиен-1,3 2) бутен-2	
 27. Какие из приведенных утверждений А. По физическим свойствам алкены по Б. Для алкенов наиболее характерны ре 1) верно только А 2) верно только Б 3) верны оба утверждения 4) оба утверждения неверны 	охожи на алканы.

- 28. Какие из приведенных утверждений об алкенах и их свойствах верны?
- **А.** Реакции присоединения в молекулах алкенов обусловлены разрывом π -связи между атомами углерода.
- **Б.** В лаборатории этен получают путем дегидратации этанола в присутствии концентрированной серной кислоты при температуре 100 °C.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны
- 29. Какие из приведенных утверждений об алкенах и их свойствах верны?
- **А.** В молекулах алкенов все атомы углерода находятся в состоянии sp^2 -гибридизации.
- Б. Обесцвечивание бромной воды качественная реакция на алкены.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны
- 30. Какие из приведенных утверждений об алкенах и их свойствах верны?
- А. Алкены практически нерастворимы в воде.
- **Б.** Обесцвечивание водного раствора перманганата калия качественная реакция на алкены.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны
- 31. Какие из приведенных утверждений об этилене и его свойствах верны?
- А. Молекула этилена имеет линейное строение.
- **Б.** При окислении этилена водным раствором перманганата калия образуется этиленгликоль.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны
- 32. Какие из приведенных утверждений о пропене и его свойствах верны?
- А. Молекула пропена имеет плоское строение.
- **Б.** Присоединение бромоводорода к молекуле пропена протекает по правилу Марковникова.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения

- 4) оба утверждения неверны
- 33. Какие из приведенных утверждений о пропене и его свойствах верны?
- А. Пропен можно отличить от пропана с помощью водного раствора перманганата калия.
- Б. Пропен используется для получения полимеров.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны
- 34. Какие из приведенных утверждений о пропене и его свойствах верны?
- А. В молекуле пропена имеется тетраэдрический фрагмент атомов.
- Б. При гидратации пропена преимущественно образуется пропанол-1.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны
- 35. Какие из приведенных утверждений о пропене и его свойствах верны?
- А. Между молекулами пропена существуют водородные связи.
- Б. Присоединение хлороводорода к пропену протекает по ионному механизму.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны
- 36. Какие из приведенных утверждений о бутене-1 и его свойствах верны?
- А. Бутен-1 способен к образованию цис-транс- изомеров.
- **Б.** Бутен-1 можно получить при нагревании 2-хлорбутана со спиртовым раствором щелочи.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны
- 37. Какие из приведенных утверждений о бутене-2 и его свойствах верны?
- **А.** При окислении бутена-2 водным раствором перманганата калия образуется бутанол-2.
- Б. Бутен-2 можно отличить от бутана с помощью бромной воды.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны

38. В схеме превращений			
$C_2H_6 \rightarrow X \rightarrow [$	— CI	$H_2 - CH_2 -]_n$	
веществом Х является	• `	~	
1) CH_4 2) C_2H_2	3)	C_2H_4	4) C_4H_8
39. В схеме превращений			
$X_{1} \xrightarrow{H_2SO_{4}$ конц $,180$ 0 С	C_2H_4	$\xrightarrow{+X_2}$ C ₂ H ₅ C	1
веществами X_1 и X_2 соответственно яв	ЗЛЯЮ	тся	
1) CH ₃ Cl и Cl ₂		CH ₃ Cl и HCl	
2) C ₂ H ₅ OH и HCl	4)	C_2H_6 и Cl_2	
40. В схеме превращений		ıV	
$X_{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}} X_{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}} X_{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}} X_{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}}^{\stackrel{+}{\longrightarrow}^{$		= -	l_2
веществами X_1 и X_2 соответственно яв			
1) C ₂ H ₅ Cl и Cl ₂		C ₂ H ₅ Cl и HCl	
2) C ₂ H ₅ OH и Cl ₂	4)	C_2H_6 и Cl_2	
41. В схеме превращений			
1-хлорпропан	Н спирт.	$p-p, t^0$ X_1 +HBr	X_2
веществами X_1 и X_2 соответственно яв			112
		пропин и 1-бр	опрмпропан
 пропан и 2-бромпропан пропан и 1-бромпропан 	4)	пропен и 2-бр	
42. В схеме превращений	100	0.00 111.0 11+	
пропанол- $\frac{1}{1}$			\mathbf{X}_2
веществами X_1 и X_2 соответственно яв			_
1) пропан и пропаналь		пропин и прог	
2) пропан и пропанол-2	4)	пропен и прог	танол-2
43. В схеме превращений			
пропен + H ₂ , Ni, t ⁰	_ X	+ Вг _{2,} свет	X_2
веществами X_1 и X_2 соответственно яв	тяю Спяно	TCA	(L 2
1) пропан и 2-бромпропан		пропин и 2-бр	омропан
2) пропин и 1-бромпропан	4)	пропан и 1,1-д	_
-,position is operated as	- /	F	
44. В схеме превращений			
пропан \rightarrow X-	+	$\xrightarrow{\operatorname{Br}_2(\operatorname{вода})} X_2$	
веществами Х ₁ и Х ₂ соответственно яв	зляю'	тся	
1) пропин и 2-бромпропан	3)	пропен и 2-бр	омпропан
2) пропен и 1,2-дибромпропан	4)	пропен и 1,3-д	дибромпропан
45. Этилен реагирует с			

1) Cu

4) KMnO₄

2) Br₂

5) H₂O

3) Cu(OH)₂

6) Mg(OH)₂

46. Пропен способен реагировать с каждым из трех веществ в ряду

1) Br_2 , HCl, C_3H_8

4) HCHO, CH₄, HBr

2) KMnO₄, H₂, H₂O

5) H₂, O₂, HI

3) KH, C_6H_6 , I_2

6) H₂O, HCl, Br₂

47. И для этена, и бутена-2 справедливы утверждения

- 1) содержат только sp^2 -гибридные атомы углерода
- 2) имеют плоское строение молекулы
- 3) образуют цис-транс-изомеры
- 4) обесцвечивают водный раствор перманганата калия
- 5) взаимодействуют с бромоводородом
- 6) горят на воздухе

48. Для этилена в отличие от этана характерны

- 1) наличие π -связи между атомами углерода
- 2) образование *цис-транс*-изомеров
- 3) плохая растворимость в воде
- 4) плоское строение молекулы
- 5) способность вступать в реакцию полимеризации
- 6) горение на воздухе с выделением большого количества тепла

49. Пропен в отличие от этена

- 1) содержит тетраэдрический фрагмент атомов в молекуле
- 2) имеет несимметричное строение молекулы
- 3) образует межклассовые изомеры
- 4) плохо растворяется в воде
- 5) окисляется водным раствором перманганата калия
- 6) обесцвечивает бромную воду

50. Этен в отличие от этана

- 1) содержит атомы углерода в sp²-гибридном состоянии
- 2) хорошо растворяется в воде
- 3) образует межклассовые изомеры
- 4) окисляется водным раствором перманганата калия
- 5) взаимодействует с бромом
- 6) горит на воздухе светящимся пламенем

51. По правилу Марковникова происходит взаимодействие между

- 1) бутеном-1 и хлороводородом
- 4) пропеном и бромоводородом
- 2) бутеном-1 и водородом
- 5) пропаном и хлором

3) бутеном-2 и водой

6) бутеном-1 и водой

52. Установите соответствие между исходными веществами и продуктами, преимущественно образующимися в результате их взаимодействия.

ИСХОДНЫЕ ВЕЩЕСТВА

- A) $CH_2=CH-CH_3+HBr \rightarrow$
- Б) $CH_2=CH-CH_2F+HBr \rightarrow$
- B) $CH_2=CH-CH_3+Br_{2(BOJH.)} \rightarrow$
- Γ) $CH_2=CH-CH_3+Br_2 \xrightarrow{450\,^{\circ}C}$

ПРОДУКТЫ РЕАКЦИИ

- 1) $CH_2Br CH_2 CH_3$
- 2) $CH_3 CHBr CH_3$
- 3) $CH_3 CHBr CH_2F$
- 4) $CH_2Br CH_2 CH_2F$
- 5) $CH_2Br CHBr CH_3$
- 6) $CH_2=CH-CH_2Br+HBr$

A	Б	В	Γ

53. Установите соответствие между исходными веществами и продуктами, преимущественно образующимися в результате их взаимодействия.

ИСХОДНЫЕ ВЕЩЕСТВА

- A) $CH_2=CH-CH_2-CH_3+HCl \rightarrow$
- B) CH_3 -CH= CH_2 + H_2O $\xrightarrow{H_2SO_4, t^0}$
- Γ) CH_3 -CHCl- CH_2 - CH_3 +KOH(CΠΙΙΡΤ.P-P) \longrightarrow

ПРОДУКТЫ РЕАКЦИИ

- 1) CH₂Cl-CH₂-CH₂-CH₃
- 2) CH₃-CHCl-CH₂-CH₃
- 3) CH₃-CHOH-CH₃
- 4) CH₃-CH₂-CH₂OH
- 5) $CH_2=CH-CH_2-CH_3+KCl+H_2O$
- 6) CH_3 -CH=CH- CH_3 + KCl + H_2O

		· -	
A	Б	В	Γ

54. Установите соответствие между схемой реакции и продуктом (продуктами) окисления алкена, преимущественно образующимся (образующимися) в результате реакции.

СХЕМА РЕАКЦИИ

- A) $CH_2=CH_2+O_2 \rightarrow$
- Б) $CH_2 = CH_2 + O_2 \xrightarrow{Ag,300} {}^{0}C$
- B) $CH_2=CH-CH_3 + KMnO_4 \xrightarrow{H_2O, 20\,{}^{0}C}$
- Γ) CH₂=CH-CH₃ + KMnO₄ $\stackrel{\text{H}_2SO_4, t^0}{\longrightarrow}$

ПРОДУКТ (ПРОДУКТЫ) ОКИСЛЕНИЯ АЛКЕНА

- 1) $CO_2 + H_2O$
- 2) $CH_2(OH)-CH(OH)-CH_3$
- 3) $CO_2 + CH_3$ -COOH
- 4) C₂H₅-COOH
- 5) H_2C-CH_2

_	\	O	/
		V	

A	Б	В	Γ

55. Установите соответствие между схемой реакции и продуктом (продуктами) окисления алкена, преимущественно образующимся (образующимися) в результате реакции.

ИСХОДНЫЕ ВЕЩЕСТВА

ПРОДУКТ (ПРОДУКТЫ) ОКИСЛЕНИЯ АЛКЕНА

- A) $CH_2=CHCH_2CH_3+KMnO_4 \xrightarrow{H_2SO_4, t^0}$
- 1) CH₂(OH)-CH₂(OH)

 $\begin{array}{ccc} \text{E} & \text{E} &$

B) $CH_2=CH_2 + KMnO_4 \xrightarrow{H_2O, 20} {}^{0}C$

Γ) $CH_2 = CH_2 + KMnO_4 \xrightarrow{H_2SO_4, t^0}$

2) $CO_2 + H_2O$

3) CH₃COOH

4) $CO_2 + C_2H_5$ -COOH

5) C₃H₇-COOH

6) CH₃-CH(OH)-CH(OH)-CH₃

A	Б	В	Γ

4. АЛКИНЫ

Алкины (ацетиленовые углеводороды) — это углеводороды, в молекулах которых два атома углерода находятся в состоянии sp-гибридизации и связаны друг с другом тройной связью: - С≡С -

Общая формула гомологического ряда алкинов:

$$C_nH_{2n-2}, n \ge 2$$

4.1. Способы получения алкинов

Особое место в ряду алкинов с позиции промышленной значимости занимает ацетилен, годовое производство которого в мире превышает 5 млн т. В связи с этим разработан ряд специфических методов синтеза ацетилена.

Получение ацетилена

1. Гидролиз карбида кальция

$$CaC_2 + 2H_2O \rightarrow CH \equiv CH + Ca(OH)_2$$

2. Пиролиз углеводородов

$$CH_4 \xrightarrow{1500^{\circ} C} CH \equiv CH + 3 H_2$$

Получение гомологов ацетилена

1. Реакция элиминирования дигалогенпроизводных

CH₃CHBr CH₂Br + 2 NaOH
$$\xrightarrow{C_2H_5OH,t}$$
 CH₃C \equiv CH + 2NaBr + 2H₂O

CH₃CH₂ CHBr₂ + 2 NaOH $\xrightarrow{C_2H_5OH,t}$ CH₃C \equiv CH + 2NaBr + 2H₂O

CH₃CHBr = CH₂ + NaOH $\xrightarrow{C_2H_5OH,t}$ CH₃C \equiv CH + NaBr + H₂O

2. Дегалогенирование тетрабромпроизводных алканов

$$CHBr_2 - CHBr_2 + 2 Zn_{(\Piыль)} \xrightarrow{r^0} CH \equiv CH + 2 ZnBr_2$$

3. Алкилирование алкинов и алкилацетиленидов

$$CH_3 - C \equiv C - Na + CH_3C1 \xrightarrow{t^0} CH_3 - C \equiv C - CH_3 + NaC1$$

$$CH_3 - C \equiv C - H + CH_3C1 \xrightarrow{Pd^{2+}} CH_3 - C \equiv C - CH_3 + HC1$$

4.2. Химические свойства алкинов

Химические свойства алкинов определяются наличием в их молекулах тройной связи, которая является сочетанием одной σ- и 2 π - связей. Так как облако двух π-связей имеет высокую симметрию, то для нарушения этой симметрии требуется дополнительная затрата энергии. Поэтому алкины, несмотря на большую ненасыщенность, менее активно вступают в реакции электрофильного присоединения и окисления по сравнению с алкенами. Многие реакции присоединения алкинов идут лишь в присутствии катализаторов. Второй особенностью электронного строения алкинов является полярность –C≡C–H, связанная повышенная связи электроотрицательность sp-гибридизованного атома углерода выше, чем у sp²и sp³-гибридизованных атомов. Поэтому алкины с тройной связью на конце цепи обладают слабокислотными свойствами. Некоторые реакции алкинов протекают в две стадии с промежуточным образованием производных этилена, а затем этана.

Таким образом, типичными реакциями алкинов, как и алкенов, являются реакции электрофильного присоединения, окисления, полимеризации, а также возможны реакции нуклеофильного присоединения и замещения атома водорода при концевой тройной связи.

1. Реакции электрофильного присоединения

1.1 Галогенирование

$$R - C \equiv CH + Br_2 \xrightarrow{CCl_4, 20^{\circ} C} R - CBr = CHBr$$

$$R - CBr = CHBr + Br_2 \xrightarrow{CCl_4, 20^{\circ} C} R - CBr_2 - CHBr_2$$

1.2 Гидрогалогенирование

$$R - C \equiv CH + HBr \rightarrow R - CBr = CH_2 + HBr \rightarrow RCBr_2 - CH_3$$

Присоединение галогеноводородов к несимметричным алкинам с электродонорными заместителями протекает региоселективно по правилу Марковникова.

1.3. Гидратация (реакция М.Г.Кучерова)

При гидратации ацетилена образуется ацетальдегид.

$$HC \equiv CH + H_2O \xrightarrow{Hg^{2+}} CH_3 - C \xrightarrow{N} H$$

При гидратации гомологов ацетилена образуются кетоны:

$$CH_3C\equiv CH + H_2O \xrightarrow{Hg^{2+}} CH_3-C-CH_3$$
 \parallel
 O

2. Реакции нуклеофильного присоединения

Общность реакций присоединения к тройной связи таких реагентов, как спирты, фенолы, тиолы, амины, карбоновые кислоты, амиды, циановодородная кислота. состоит в том, что в результате реакции образуются винильные производные. На этом основании эти реакции называют реакциями винилирования:

$$R - C = CH$$

$$CH_{3}OH$$

$$CH_{2} = C - R$$

$$OCH_{3}$$

$$CH_{2} = C - R$$

$$NHR^{1}$$

$$HCN$$

$$CH_{2} = C - R$$

$$CN$$

$$CH_{3}COOH$$

$$CH_{2} = C - R$$

$$CH_{2} = C - R$$

$$CN$$

$$CH_{3}COOH$$

$$CH_{2} = C - R$$

$$CH_{2} = C - R$$

$$CH_{3}COOH$$

$$CH_{2} = C - R$$

$$CH_{2} = C - R$$

$$CH_{3}COOH$$

$$CH_{2} = C - R$$

$$CH_{3}COOH$$

$$CH_{3} = C - R$$

Присоединение перечисленных реагентов к тройной связи осуществляется в присутствии катализаторов — солей ртути (II) и меди (I) по механизму нуклеофильного присоединения.

Для получения винильных производных берётся большой избыток алкина, так как реакция может протекать дальше с разрывом двойной связи.

3. Реакции гидрирования

$$R-C \equiv CH + H_2 \xrightarrow{t,Pt} R - CH = CH_2 + H_2 \xrightarrow{t,Pt} R - CH_2 - CH_3$$
 алкен

4. Реакции ди-, тримеризации

4.1. Димеризация

$$2C_2H_2$$
 $\xrightarrow{\text{CuCl, H}^+}$ $CH_2=\text{CH-C}\equiv\text{CH}$ винилацетилен $2\text{CH}_3\text{-C}\equiv\text{CH}$ $\xrightarrow{\text{CuCl, H}^+}$ $CH_3\text{-CH}=\text{CH-C}\equiv\text{CH}$

4.2. Циклотримеризация

$$3HC \equiv CH \xrightarrow{C_{a\kappa m}, t^{\circ}} C_{6}H_{6}$$

$$3R - C \equiv CH \xrightarrow{C_{a\kappa m}, t^{\circ}} R$$

5. Кислотные свойства

$$R - C \equiv C - H + NH_2Na \xrightarrow{NH_{3(\mathcal{H})}} R - C \equiv C - Na + NH_3$$

 $R - C \equiv C - H + CH_3MgBr \rightarrow R - C \equiv C - MgBr + CH_4$

!Реакции, протекающие с образованием ацетиленидов, являются качественными на тройную связь.

$$CH_3-C\equiv CH+[Ag(NH_3)_2]OH \rightarrow CH_3-C\equiv CAg\downarrow + 2NH_3 + H_2O$$

$$H-C\equiv C-H+2[Cu(NH_3)_2]CI \rightarrow Cu-C\equiv C-Cu\downarrow + 2NH_3 + 2NH_4CI$$

Металлические производные алкинов (ацетилениды) легко вступают в реакции нуклеофильного замещения с алкилгалогенидами с образованием гомологов ацетилена.

$$Cu-C \equiv C-Cu + 2HCl \rightarrow C_2H_2\uparrow + 2CuCl\downarrow$$

$$R-C \equiv C-MgBr + C_2H_5Br \rightarrow R-C \equiv C-C_2H_5 + MgBr_2$$

6. Реакции окисления

Алкины легко окисляются различными окислителями — перманганатом калия в кислой или щелочной среде. Дихроматом калия в кислой среде, озоном. При окислении тройная связь расщепляется и продуктами окисления являются карбоновые кислоты. Первичный атом углерода в алкинах с концевой тройной связью окисляется в оксид углерода (IV).

$$5\text{CH}_3\text{C}\equiv\text{CH} + 8\text{KM}n\text{O}_4 + 12\text{H}_2\text{SO}_4 \xrightarrow{t^o} 5\text{CH}_3\text{COOH} + 5\text{CO}_2 + 8\text{MnSO}_4$$

$$+ 4\text{K}_2\text{SO}_4 + 12\text{H}_2\text{O}$$

$$\text{CH}_3\text{C}\equiv\text{CH} + \text{KM}n\text{O}_4 + \text{H}_2\text{O} \xrightarrow{t^o} \text{CH}_3\text{COOK} + \text{CO}_2 + \text{MnSO}_4 + \text{K}_2\text{SO}_4 + \text{H}_2\text{O}}$$

$$3CH$$
≡ $CH + 8KMnO4 + 4H2O → 3HOOC—COOH + 8MnO2↓+ 8KOH щавелевая кислота$

$$C_2H_2$$
 + $KMnO_4$ \rightarrow $H_2C_2O_4$ + $MnSO_4$ + K_2SO_4 + H_2O

$$3C_2H_2 + 8KMnO_4 \rightarrow 3K_2C_2O_4 + 8MnO_2 + 2KOH + 2H_2O$$
 оксалат калия

4.3. Задания для самоконтроля по теме «Алкины»

1.]	Молекулярная ф	ормула алкинов				
	C_nH_{2n}		3)	C_nH_{2n-6}	4)	C_nH_{2n+2}
2. К соединениям с общей формулой C_nH_{2n-2} относятся						
_ (алкены и алкаді			алкины и алкади		
2)	арены и циклоа	лканы	4)	алкены и циклог	алка	НЫ
3. <i>1</i>	Алкином может	быть вещество, форм	мул	а которого		
1)	C_6H_6	2) C_5H_8	3)	C_6H_{14}	4)	C_6H_{12}
4.]	Гомологом проп	ина является вещест	во,	структурная фор	мула	а которого
1)	$CH \equiv C - CH_2 -$	· CH ₃	3)	$CH_3 - CH_2 - C$	H_2 –	- CH ₃
2)	$CH_3 - CH = CH$	— CH ₃	4)	$CH_2 = CH - CH$	$= C_{i}$	H_2
5.]	Пространственн	ые <i>цис-транс</i> - изомеј	эы і	имеет		
		2) бутен-2			4)	бутин-2
6.]	Бутин-1 и бутади	иен-1,3 являются				
	геометрическим		3)	гомологами		
	_	и изомерами		одним и тем же	вещ	еством
7.]	Последовательно	ости				
		алкан – ал	кен	ı — алкин		
MO	жет соответство	вать ряд веществ				
	C_4H_8 , C_6H_6 , C_2H_8	_	3)	$C_5H_{12}, C_4H_6, C_6I_6$	H_6	
	$C_6H_{14}, C_5H_{10}, C_5H_{10}$			$C_7H_{14}, C_4H_8, C_2I_8$		
8.]	В молекуле ацет	илена атомы углерол	іа н	аходятся в состо	яниі	и гибридизации
1)	только sp^3	илена атомы углерод $2)$ только sp^2	3)	только sp	4)	sp^3 и sp
Q 1	З молекуле проп	ина атомы углерода	пал	AUTOLO D COCTORI	ו גוגונ	гибрилизании
1)	тон ко ср	2) только sp ²	2)	ср ² и ср	1MM 1	поридизации
1)	только sp	2) Только sp	3)	sp usp	4)	<i>sp</i> и <i>sp</i>
	Длина связи С вны	'≡С и валентный уг	0Л 1	в молекулах алк	ино	в соответственно
-	120° и 0,154 нм	1	3)	120° и 0,134 нм		
	180° и 0,120 нм		4)	109°28′ и 0,154	НМ	
11	Число о-связей	в молекуле ацетиле	าล ท	авно		
	2	2) 3	3)		4)	6
,		/	,		,	

1)		2)	олекуле пентина 2	3)		4)	4
13.	Геометрическая	я ко	нфигурация мол	екул	ты этина		
1)	угловая			3)	линейная		
2)	тетраэдрическа	Я		4)	треугольная		
14.	Раствор КМпО	₄ об	есцвечивают оба	а вец	цества в ряду		
	пропин и пропа				ацетилен и этг	илен	
2)	бутадиен-1,3 и бутан			4)	бутилен и изо	бута	Н
15.	Бромную воду	обес	сцвечивают оба	вещ	ества в ряду		
1)	бутин-1 и бута	Н		3)	гексан и поли	этил	ен
2)	изопрен и прог	іан		4)	бутин-2 и бут	ен-2	
16.	И этин, и этан в	заи	модействуют с				
1)	водородом			3)	хлором		
2)	бромоводородо	OM		4)	натрием		
17.	И пропин, и пр	опен	н взаимодейству	ют с	;		
1)	HC1	2)	[Cu (NH ₃) ₂]Cl	3)	NaOH	4)	$[Ag(NH_3)_2]OH$
18.	При гидратациі	и ац	етилена образуе	тся			
1)	этанол	2)	этаналь	3)	этиленгликолі	5 4)	этен
19.	С каждым из тр	ех і	веществ:				
MO	жет реагировать		бромом, бромово	одор	одом, натрием	_	
	жет реагировать бутан		бутен-1	3)	бутин-2	4)	бутин-1
20.	Реакция тример	эиза	ции ацетилена и	спо.	пьзуется для по	луче	КИН
1)	винилацетилен				циклогексана	,	
2)	бензола			4)	полипропилен	ıa	
21.	В результате ре	акц	ии Кучерова обр	разус	ется		
	этанол		этан		этаналь	4)	этандиол-1,2
22.	При гидролизе	кар	бида кальция об	разу	ются		
1)	метан и оксид к	аль	ция	3)	ацетилен и окс	ид к	альция
-	метан и гидрок			4)	ацетилен и гид	рокс	сид кальция
23.	Ацетилен в одн	іу ст	адию можно по	лучи	ить из		
1)	карбида кальци	Я		3)	карбоната кал	ьция	
2)	карбида алюми	ния	- -		оксида углеро		

- 24. Ацетилен в промышленности получают, используя
- 1) гидролиз карбида кальция
- 3) перегонку нефти

2) пиролиз метана

- 4) гидрирование этена
- 25. Пропин можно получить по реакции, схема которой
- 1) $CH_3CH_2CH_2Cl + KOH(cпирт) \rightarrow$
- 2) $CH_3CHClCH_2Cl + KOH(cпирт) \rightarrow$
- 3) $CH_3CHClCH_2Cl + KOH(водн.) \rightarrow$
- 4) $CH_3CHClCH_3 + KOH(спирт) \rightarrow$
- 26. Этин можно отличить от этана с помощью
- 1) лакмуса

- 3) гидроксида меди(II)
- 2) водного раствора щелочи
- 4) бромной воды
- 27. Пропин можно отличить от пропена с помощью
- 1) водного раствора перманганата калия
- 2) раствора хлорида железа(III)
- 3) бромной воды
- 4) аммиачного раствора оксида серебра
- 28. Бутин-2 можно отличить от бутина-1 с помощью
- 1) бромной воды
- 2) аммиачного раствора хлорида меди(I)
- 3) водного раствора хлорида меди(II)
- 4) водного раствора перманганата калия
- 29. Какие из приведенных утверждений об алкинах и их свойствах верны?
- А. Алкины изомерны алкадиенам.
- Б. При полном гидрировании алкинов получают алкены.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны
- 30. Какие из приведенных утверждений об ацетилене и его свойствах верны?
- А. Ацетилен хорошо растворим в воде.
- Б. Ацетилен образует с воздухом взрывоопасные смеси.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны
- 31. Какие из приведенных утверждений об ацетилене и его свойствах верны?
- **А.** Атомы углерода в молекуле ацетилена находятся в sp-гибридном состоянии.

- Б. Ацетилен горит в кислороде коптящим пламенем.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны
- 32. Какие из приведенных утверждений об ацетилене и его свойствах верны?
- А. Молекула ацетилена имеет линейное строение.
- **Б.** Ацетилен в промышленности получают высокотемпературным пиролизом метана.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны
- 33. Какие из приведенных утверждений об ацетилене и его свойствах верны?
- А. Ацетилен газ с резким запахом.
- Б. Ацетилен используется для сварки и резки металлов.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны
- 34. Какие из приведенных утверждений о пропине и его свойствах верны?
- **А.** Молекула пропина содержит атом углерода в sp^2 -гибридном состоянии.
- Б. В результате гидратации пропина образуется пропаналь.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны
- 35. Какие из приведенных утверждений о пропине и его свойствах верны?
- А. В молекуле пропина содержится тетраэдрический фрагмент атомов.
- Б. Пропин можно отличить от пропана с помощью бромной воды.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны
- 36. Какие из приведенных утверждений о бутине-2 и его свойствах верны?
- А. Для бутина-2 характерна цис-транс-изомерия.
- Б. Бутин-2 взаимодействует с натрием с выделением водорода.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны

37. В схеме превращений

$$CaC_2 \xrightarrow{+H_2O} X_1 \xrightarrow{+1 \text{ моль HCl}} X_2$$

веществами X_1 и X_2 являются соответственно

1) C₂H₄ и C₂H₅Cl

3) C₂H₂ и CH₂Cl-CH₂Cl

2) C₂H₂ и CH₂=CHCl

4) CH₄ и CH₃Cl

38. В схеме превращений

$$CH_3COONa \xrightarrow{+NaOH(c\pi) \text{авление})} X_1 \xrightarrow{1500\,{}^{\circ}\text{C}} X_2$$

веществами X_1 и X_2 являются соответственно

1) C₂H₆ и C₂H₄

3) CH₄ и C₂H₆

2) C₂H₂ и C₂H₄

4) CH₄ и C₂H₂

39. В схеме превращений

CH₄
$$\xrightarrow{1500\,^{\circ}\text{C}}$$
 $X_1 \xrightarrow{+\text{H}_2\text{O},\,\text{Hg}^{2+}}$ X_2

веществами X_1 и X_2 являются соответственно

1) C₂H₄ и C₂H₅OH

3) C₂H₂ и CH₃COOH

2) C₂H₂ и CH₃COH

4) C₂H₄ и CH₃COH

40. В схеме превращений

$$CaC_2 \xrightarrow{+H_2O} X_{\stackrel{+}{\leftarrow} KMnO_4, H_2O} X_2$$

веществами X_1 и X_2 являются соответственно

1) CH₄ и CH₂O

3) C₂H₂ и CH₃COOK

2) C₂H₂ и KOOC-COOK

4) C₂H₂ и CH₂HO-CH₂OH

41. В схеме превращений

$$C_2H_6 \xrightarrow{1200\,^{\circ}\!\mathrm{C}} X_1 \xrightarrow{\text{активиров.уголь}} X_2$$

веществами X_1 и X_2 соответственно являются

1) C₂H₄ и C₆H₆

3) C₂H₂ и C₆H₆

2) C₂H₂ и C₆H₁₂

4) C_2H_4 и C_6H_{12}

42. В схеме превращений

$$CH_2Br-CH_2Br \xrightarrow{+X_1} C_2H_2 \xrightarrow{+X_2} CH_2=CHCl$$

веществами X_1 и X_2 соответственно являются

- 1) КОН спирт. р-р и НС1
- 3) КОН водн. p-p и Cl₂

КОН водн. p-p и HCl

4) Zn и Cl₂

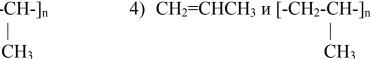
43. В схеме превращений

$$C_2H_2 \xrightarrow{+1$$
моль $HCl} X_1 \xrightarrow{$ полимеризация X_2

веществами X_1 и X_2 являются соответственно

- 1) C_2H_5Cl и [-CHCl-CHCl-] $_n$
- 3) CH₂=CHCl и [-CH₂-CHCl-]_n
- 2) C₂H₅Cl и [-CH₂-CHCl-]_n
- 4) CHCl=CHCl и [-CHCl-CHCl-]_n

44. В схеме превращений

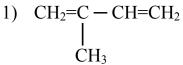

пропин
$$+1$$
моль H_2 \rightarrow X_1 полимеризация X_2

веществами X_1 и X_2 являются соответственно

- 1) CH₂=CHCH₃ и [-CH₂-CH₂-CH₂-]_n 3) CH₃CH₂CH₃ и [-CH₂-CH₂-CH₂-]_n

 CH_3

2) CH₃CH₂CH₃ и [-CH₂-CH-]_n



45. Установите соответствие между названием вещества и его структурной формулой:

НАЗВАНИЕ ВЕЩЕСТВА

A) 2-метилбутен-1

СТРУКТУРНАЯ ФОРМУЛА

- Б) изопрен
- В) пентин-2
- Γ) полиэтилен

- $CH_3 C \equiv C CH_2 CH_3$ 2)
- $CH_3 CH_2 C = CH_2$ 3) CH₃
- 4) $CH_2=C(CH_3)-CH_3$
- 5) $[-CH_2-CH_2-]_n$

A	Б	В	Γ	

- 46. По правилу Марковникова происходит взаимодействие между
- 1) бутином-2 и хлороводородом
- 4) бутаном и хлором
- 2) бутином-1 и водородом
- 5) пропеном и бромоводородом

3) бутином-1 и водой

- 6) пропином и водой
- 47. Бутин-1 способен реагировать с
- 1) натрием

4) кислородом

2) гидроксидом натрия

5) хлоридом меди(II)

водой

- 6) серебром
- 48. Бутин-2 способен реагировать с
- 1) аммиачным раствором хлорида меди(I)
- 2) водным раствором перманганата калия
- 3) хлороводородом
- 4) бромом
- 5) натрием
- 6) гидроксидом калия

- 49. Ацетилен способен реагировать с каждым из веществ, указанных в ряду
- 1) NaOH, C_6H_5Cl , I_2

4) [Cu(NH₃)₂]Cl, O₂, Na

2) CuSO₄, H₂, Li₂O

- 5) KMnO₄, HCN, HBr
- 3) H_2O , Br_2 , $[Ag(NH_3)_2]OH$
- 6) Ag, $Cu(OH)_2$, Cl_2
- 50. Пропин способен реагировать с каждым из веществ, указанных в ряду
- 1) LiOH, C₆H₆, I₂

4) H₂, O₂, Na

2) Cu, H₂, H₂O

- 5) KMnO₄, CH₄, HBr
- 3) Cl_2 , HCl, $[Ag(NH_3)_2]OH$
- 6) H₂O, [Cu(NH₃)₂]Cl, Br₂
- 51. Для ацетилена справедливы утверждения
- 1) атомы углерода в молекуле находятся в состоянии sp-гибридизации
- 2) молекула имеет линейное строение
- 3) при обычных условиях газ, тяжелее воздуха
- 4) взаимодействует с медью с выделением водорода
- 5) окисляется под действием гидроксида меди(II)
- 6) горит на воздухе коптящим пламенем
- 52. Для бутина-2 характерны
- 1) sp-гибридизация всех атомов углерода в молекуле
- 2) наличие иис-транс-изомеров
- 3) реакция гидрирования
- 4) окисление под действием перманганата калия
- 5) взаимодействие с аммиачным раствором оксида серебра
- 6) обесцвечивание бромной воды
- 53. И для ацетилена, и для дивинила характерны
- 1) наличие сопряженных двойных связей
- 2) взаимодействие с натрием
- 3) реакция полимеризации
- 4) взаимодействие с галогеноводородами
- 5) горение на воздухе бесцветным пламенем
- 6) реакция гидрирования
- 54. И для ацетилена, и для этилена характерны
- 1) sp^2 -гибридизация всех атомов углерода в молекуле
- 2) наличие двух π-связей в молекуле
- 3) взаимодействие с галогенами
- 4) обесцвечивание раствора перманганата калия
- 5) реакция с аммиачным раствором оксида серебра
- 6) горение на воздухе

5. АЛКАДИЕНЫ

Алкадиены – ненасыщенные алифатические углеводороды, в молекулах которых между атомами углерода имеются две двойные связи.

Общая формула гомологического ряда алкадиенов:

$$C_nH_{2n-2}$$
, $n \ge 3$

В зависимости от взаимного расположения двойных связей различают три типа диенов:

1. алкадиены с кумулированным расположением двойных связей:

2. алкадиены с сопряжёнными двойными связями:

3. алкадиены с изолированными двойными связями:

Изолированные диены по химическим свойствам не отличаются от алкенов, свойства диенов с кумулированными связями весьма специфичны. Наиболее важным как в практическом, так и в теоретическом отношении классом алкадиенов являются сопряжённые диены.

5.1. Способы получения алкадиенов

Промышленные способы

1. Дегидратация и дегилрирование этанола(способ С.В. Лебедева)

$$2 C_2H_5OH \xrightarrow{MgO,ZnO,450-500^{\circ}C} H_2C = CH - CH = CH_2 + 2 H_2O + H_2$$

2. Дегидрирование бутана

$$CH_3 - CH_2 - CH_2 - CH_3 \xrightarrow{Cr_2O_3, Al_2O_3, 650^{\circ}C} H_2C = CH - CH = CH_2 + H_2$$

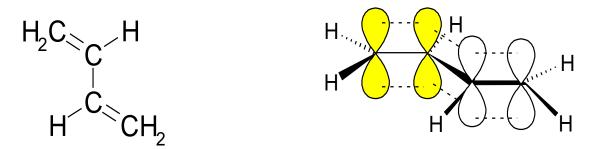
Лабораторные способы

1. Дегидратация спиртов

CH₂(OH) CH₂CH₂CH₂OH
$$\xrightarrow{Al_2O_3, 300-350^0 C}$$
 H₂C = CH–CH = CH₂+2H₂O

2. Отщепление галогеноводородов от галогенпроизводных алканов:

$$CH_2BrCH_2CH_2CH_2Br$$
 $NaOH, C_2H_5OH$
 $H_2C=CH-CH=CH_2 + 2NaBr + 2H_2O$


3. Отщепление галогенов от дигалогенпроизводных алканов:

$$CH_2BrCHBrCH_2Br + 2Zn_{\text{(IIIIIII)}} \stackrel{_{t^0}}{\longrightarrow} H_2C = CH - CH = CH_2 + 2ZnBr_2$$

5.2. Химические свойства алкадиенов

Особенности химического поведения сопряжённых диенов определяются наличием сопряжения - образования единого π - электронного облака в результате взаимодействия негибридизованных р-орбиталей атомов углерода, соединённых чередующимися двойными и одинарными связями. Вследствие такого перекрывания образуется единое π - электронное облако: электроны в нём делокализованы и в равной мере принадлежат всем атомам углерода, входящим в систему сопряжённых связей.

Основная особенность сопряжённой системы заключается в том, что она реагирует как единое целое с образованием смеси продуктов.

Электронное строение молекулы бутадиена

Для сопряжённых диенов характерны реакции, протекающие по механизму электрофильного и радикального присоединения. В этих реакциях сопряжённые диены более реакционноспособны, чем диены с изолированными кратными связями. В зависимости от соотношения субстрат — реагент

возможны реакции присоединения с разрывом одной или обеих кратных связей в молекуле диена. Наличие сопряжённой системы π - электронов приводит к особенностям реакций присоединения.

1. Реакции электрофильного присоединения

1.1. Галогенирование

$$CH_2 = CH - CH = CH_2 + Br_2 \longrightarrow CH_2 + CH - CH = CH_2 \xrightarrow{Mедленно}$$
 CH_2Br
 CH_2Br
 CH_2Br
 $CH_2 = CH - CH = CH - CH_2$
 $CH_2 = CH + CH - CH_2$
 $CH_2 = CH + CH_2$
 $CH_2 = CH_2 + CH_2 - CH_2$
 $CH_2 = CH_2 + CH_2$
 $CH_2 = CH_2$

Анализ механизма реакции показывает, что истинное строение карбкатиона – среднее между предельными структурами A и Б, сопряжение делает такой катион стабильным.

Относительное содержание 1,2- и 1,4- продуктов зависит от условий реакции — температуры, продолжительности, растворителя и т. д. В условиях достижения равновесия преобладает 1,4- продукт, то есть он должен быть более устойчивым. При пониженных температурах, когда равновесие ещё не достигнуто, преобладает 1,2- продукт, то есть он образуется быстрее.

1.2. Гидрогалогенирование

2. Реакции гидрирования

$$CH_2$$
= CH_2 - CH_2 - CH_3

3. Реакции полимеризации

В отличие от алкенов в результате полимеризации 1,3- алкадиенов образуются высокомолекулярные продукты с большим числом изолированных двойных связей. При этом чаще реализуются 1,4- взаимодействия:

$$n H_2C = CH - CH = CH_2$$
 — $CH_2 - CH = CH - CH_2$ полибутадиен

 $n H_2C = CH - CH_2$ — CH_3 — CH_3 — $CH_2 - CH_2$ — CH_3 — $CH_2 - CH_2$ — CH_2 — CH_2 — CH_2 — CH_2 — CH_3 — CH_2 — CH_2 — CH_3 — CH_2 — CH_3 — CH_3

Полимеры на основе 1,3- алкадиенов имеют характерные упругие свойства и называются каучуками.

полиизопрен

Если полимеризации подвергается мономер одного типа, то получают гомополимер, если смесь мономеров — то сополимер.

Сополимер 1,3- бутадиена (3 части) со стиролом (1 часть) является одним из самых распространённых каучуков, используемых для изготовления автомобильных шин.

4. Реакция Дильса-Альдера (1,4 – циклоприсоединение)

изопрен

Реакция 1,4 — присоединения к 1,3 — алкадиенам, которая стала очень удобным методом синтеза сложных циклических соединений, была открыта Отто Дильсом и Куртом Альдером. В 1950 г. им была присуждена Нобелевская премия по химии.

$$CH_2$$
 HC
 $+$
 CH_2
 $+$
 $CH_$

Реакция Дильса-Альдера находит широкое применение для получения сложных циклических соединений, имеющих важное практическое применение, в том числе стероидов.

5.3. Задания для самоконтроля по теме «Алкадиены»

4 0								
	бщая формула			_ `				
1)	C_nH_{2n}	2)	C_nH_{2n-2}	3)	C_nH_{2n-6}	4)	C_nH_{2r}	1+2
2. K	соединениям с	с обі	цей формул	ой C _n H _{2r}	1-2 ОТНОСЯТС	гя		
1) a	алкены и алкад	иень	Ы	3)	алкины и	алкадиенн	οI	
2) a	алкены и цикло	алка	аны	4)	алканы и і	циклоалка	ны	
3. A	лкадиеном мох	кет (быть вещест	гво, форм	мула котор	ОГО		
	$C_{22}H_{46}$		C_4H_6		C_8H_{10}	4)	C_6H_6	
1) (омологом бута, CH ₃ — CH ₂ — C CH ₂ =C=CH — C	H=C		3)	ство, струк CH ₂ =CH - CH ₂ =C - (CH ₃	- CH=CH		
5. M	Г ежклассовым 1	изом		одорода, =CH — С		ая форму	ла кото	орого
явля	нется		_		_,			
	бутан	2)	изобутан	3)	бутен-1	4)	бутин	1-2
	В молекуле оидизации	бута	адиена-1,3	атомы	углерода	находят	ся в	состоянии
	только sp^3	2)	только sp^2	3)	sp^3 и sp^2	4)	sp^3 и	sp
7. B	молекуле изоп	рена	а атомы угл	ерода на	ходятся в (состоянии	гибри	дизации

3) sp^3 и sp^2

2) только sp^2

8. Бромную воду обесцвечивают оба вещества в ряду

1) только sp^3

4) sp^3 и sp

	бутан и изобутан изопрен и пентан			гексан и гексен дивинил и бути				
	Іродуктом полного 3,4-дибромбутен-1			циена-1,3 являето 1,2,3,4-тетрабро		тан		
	1,3-дибромбутен-2			1,4-дибромбута	-	тап		
10.	В схеме превращен	ний						
	$C_2H_4 \xrightarrow{+H_2O, H^+} X \rightarrow CH_2=CH - CH=CH_2$							
	цеством Х является			~				
1)	C_2H_6 2)	C_4H_8	3)	C_2H_2	4)	C_2H_5OH		
11.	В схеме превращен	иий						
	$C_2H_5Cl \rightarrow X \rightarrow CH_2=CH - CH=CH_2$							
веш	цеством Х является							
1)	этен 2)	н-бутан	3)	бутен-1	4)	бутен-2		
12.	Реакция полимери:	зации алкадиенов	в ис	пользуется для п	олу	чения		
1)	полиэтилена		3)	полистирола				
2)	полипропилена		4)	каучука				
	Мономером для пр	оизводства каучу	ука	является				
	бутадиен-1,2			бутен-2	_			
2)	2-метилбутадиен-	1,3	4)	2-метилпентади	ен-1	,4		
	Мономером для г жит	получения искусс	стве	нного каучука	по с	пособу Лебедева		
-	пропен		3)	бутадиен-1,2				
2)	бутен-2		4)	бутадиен-1,3				
	При полимериза омула которого	ции бутадиена-	1,3	образуется вег	цест	гво, структурная		
1)	$[-CH-CH-]_n$		3)	[-CH ₂ -CH-	CH	2 —] _n		
	CH_3 CH_3 $[-CH_2-CH=CH]$			CH ₃				
16.	Для вулканизации	каучука использу	уетс	Я				
	cepa 2)	углерод	3)	кремний	4)	фосфор		
17.	Какие из приведен	ных утверждений	і́ об	алкадиенах и их	сво	ойствах верны?		

- А. Дивинил и изопрен одно и то же вещество.
- **Б.** Алкадиены с сопряженными двойными связями используют для получения каучуков.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны
- 18. Какие из приведенных утверждений об алкадиенах и их свойствах верны?
- **А.** Бутадиен-1,2 содержит sp-гибридный атом углерода в молекуле.
- **Б.** Для алкадиенов характерны реакции присоединения, полимеризации и окисления.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны
- 19. Какие из приведенных утверждений о бутадиене-1,3 и его свойствах верны?
- **А.** Все атомы углерода в молекуле бутадиена-1,3 находятся в sp^2 -гибридном состоянии.
- Б. Бутадиен-1,3 получают термическим разложением натурального каучука.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны
- 20. Какие из приведенных утверждений о бутадиене-1,3 и его свойствах верны?
- А. Молекула бутадиена-1,3 содержит сопряженные двойные связи.
- **Б.** Бутадиен-1,3 обесцвечивает бромную воду.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны
- 21. Какие из приведенных утверждений об изопрене и его свойствах верны?
- **A.** Все атомы углерода в молекуле изопрена находятся в sp^2 -гибридном состоянии.
- Б. Изопрен можно получить дегидрированием 2-метилбутана.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны
- 22. Какие из приведенных утверждений об изопрене и его свойствах верны?

- А. Изопрен устойчив к действию окислителей.
- Б. Изопрен используют для получения каучука.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны
- 23. Какие из приведенных утверждений о каучуках верны?
- **А.** Макромолекулы натурального каучука состоят из остатков молекул изопрена.
- Б. Резина и эбонит являются продуктами вулканизации каучука.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны
- **24.** Все атомы углерода находятся в состоянии sp²-гибридизации в молекулах
- 1) этилена 4) бутадиена-1,2
- 2) пропилена 5) бензола
- 3) бутадиена-1,36) гексана
- 25. Дивинил взаимодействует с
- 1) бромом 4) гидроксидом меди(II)
- 2) гидроксидом натрия 5) кислородом
- 3) водородом 6) бутаном
- 26. Для бутадиена-1,3 характерны
- 1) ѕр-гибридизация всех атомов углерода в молекуле
- 2) наличие изолированных двойных связей в молекуле
- 3) межклассовая изомерия
- 4) твердое агрегатное состояние
- 5) способность вступать в реакцию полимеризации
- 6) обесцвечивание бромной воды
- 27. Изопрен в отличие от дивинила
- 1) содержит sp^3 -гибридный атом углерода в молекуле
- 2) образует структурные изомеры
- 3) имеет жидкое агрегатное состояние
- 4) взаимодействует с бромом
- 5) вступает в реакции полимеризации
- 6) является основным продуктом разложения натурального каучука

6. ВАРИАНТЫ КОНТРОЛЬНЫХ РАБОТ

по теме: «Алифатические углеводороды»

Вариант 1

- 1. Из пропана и неорганических реагентов предложите схему получения **н-гексана**. Напишите уравнения химических реакций, укажите условия проведения реакций и назовите все органические вещества, участвующие в реакциях.
- 2. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения и назовите органические вещества:

бутанол-1
$$\xrightarrow{Al_2O_3,t^{\circ}C}$$
 $X_1 \xrightarrow{+Cl_2}$ $X_2 \xrightarrow{+KOH,cnupm}$ $X_3 \rightarrow \xrightarrow{CuCl,NH_3}$ $X_4 \xrightarrow{CH_3Cl,AlCl_3}$ X_5

- 3. Определите структурную формулу углеводорода C_8H_{16} , при окислении которого перманганатом калия образуется смесь пропанона и 2 метилбутановой кислоты.
 - 4. Напишите уравнения реакций и назовите продукты:
 - а) гидратации бутина;
 - б) гидробромирования пентена 1;
 - в) этилацетилена с HCN (1 моль);
 - Γ) 2 метилпропановой кислоты с ацетиленом (в присутствии H_3PO_4).
- 5. Некоторый алкан ввели в фотохимическую реакцию с хлором. После реакции выделили продукт, масса которого была меньше массы исходного углеводорода на 4%. Было установлено, что продукт представляет собой монохлорид, а степень конверсии алкана составила 65%. Установите молекулярную формулу исходного углеводорода.

Вариант 2

- 1. Из метана предложите схему получения полиэтилена. Напишите уравнения химических реакций, укажите условия проведения реакций и назовите все органические вещества, участвующие в реакциях.
- 2. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения и назовите органические вещества:

бромэтан
$$\xrightarrow{+NaOH,cnupm}$$
 $X_1 \xrightarrow{+HBr}$ $X_2 \xrightarrow{+Na}$ $X_3 \xrightarrow{AlCl_3,t^{\circ}C}$ $X_4 \xrightarrow{t^{\circ}C,kt}$ $X_5 \xrightarrow{}$

- 3. Установите структурную формулу углеводорода C_7H_{12} , который с аммиакатом серебра образует соединение $C_7H_{11}Ag$, а при гидратации по Кучерову 5 метилгексанон 2. Напишите уравнения приведённых реакций и назовите все органические вещества.
- 4. С какими из перечисленных ниже реагентов может взаимодействовать пропин:
 - а) бромная вода;
 - б) азотная кислота;
 - в) кислый раствор перманганата калия;
 - г) вода;
 - д) фенол;
 - е) водно аммиачный раствор хлорида меди (I).

Напишите уравнения возможных реакций и назовите полученные продукты реакции.

5. Для проведения реакции гидрирования алкена водород был получен в аппарате Киппа. Рассчитайте массу технического цинка (6,3% примесей по массе) необходимого для получения водорода, если гидрирование прошло с выходом 65% по углеводороду, при этом получилось 33,5 г 2 — метилпентана. Какие алкены можно использовать в этой реакции?

Вариант 3

- 1. Из ацетата натрия предложите схему получения **бутена-2.** Напишите уравнения химических реакций, укажите условия проведения реакций и назовите все органические вещества, участвующие в реакциях.
- 2. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения и назовите органические вещества:

хлорэтан
$$\xrightarrow{+Mg, 3\phi up}$$
 $X_1 \xrightarrow{+H_2O}$ $X_2 \xrightarrow{t^{\circ}C, kt}$ $X_3 \xrightarrow{+Cl_2}$ $X_4 \xrightarrow{+NaOH, cnupm}$ X_5

- 3. Установите строение углеводорода C_6H_{10} , молекула которого имеет симметричное строение, не реагирует с амидом натрия в жидком аммиаке, при гидратации в присутствии сульфата ртути (II) образует несимметричное карбонильное соединение. Напишите уравнения приведённых реакций и назовите все органические вещества.
 - 4. Напишите уравнения реакций и назовите продукты:
 - а) гидробромирования бутена-1 в присутствии перекисей;
 - б) циклотримеризации пентина-1;
 - в) фенилацетилена с аммиакатом серебра;
 - г) хлорирования 2,2,3-триметилпентана.

5. Какой объём кислорода (н.у.) необходимо затратить на полное сжигание 100 л пропан-бутановой смеси с плотностью по воздуху 1,72?

Вариант 4

- 1. Предложите схему получения пропанона из метана. Напишите уравнения химических реакций, укажите условия проведения реакций и назовите все органические вещества, участвующие в реакциях.
- 2. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения:

1-бромлпропан
$$\xrightarrow{}$$
 пропен $\xrightarrow{+Br_2}$ $X_1 \rightarrow$ $\xrightarrow{+KOH,cnupm}$ $X_2 \xrightarrow{[Ag(NH_3)_2]OH}$ $X_3 \xrightarrow{CH_3Cl,AlCl_3}$ X_4

Назовите все органические вещества, участвующие в реакциях.

- 3. Соединение С₆H₁₀ обладает следующими свойствами:
 - а) обесцвечивает бромную воду;
 - б) не реагирует с $[Ag(NH_3)_2]OH$;
 - в) при озонолизе образует только пропановую кислоту.

Напишите структурную формулу углеводорода, уравнения приведённых реакций и назовите все органические вещества.

- 4. С какими из перечисленных ниже реагентов может взаимодействовать н бутан:
 - а) H_2SO_4 (конц.), 20^0C ;
 - б) Na, 20⁰С;
 - в) $SO_2 + Cl_2$, освещение, 20^0 С;
 - г) HNO₃ (разб.), 140⁰C;
 - д) Br₂, освещение, 20⁰C;
 - e) HNO₃ (конц.), 20⁰C;
 - ж) O_2 , kt, 200^0 С

Напишите уравнения возможных реакций и назовите полученные продукты реакции.

5. Для бромирования смеси пропина и бутена—2 массой 6,8 г потребовалась порция брома массой 40 г. Вычислите объёмные и массовые доли углеводородов в исходной смеси..

Вариант 5

- 1. Предложите схему получения **н бутана** из пентановой кислоты. Напишите уравнения химических реакций, укажите условия проведения реакций и назовите все органические вещества, участвующие в реакциях.
- 2. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения и назовите органические вещества:

$$A \xrightarrow{+KOH,cnлавление} H - бутан \xrightarrow{AlCl_3,f^{\circ}C} X_1 \xrightarrow{+Br_2} X_2 \rightarrow$$
 $\xrightarrow{-HCl} X_3 \rightarrow пропанон$

- 3. Установите строение углеводорода C_5H_8 , который не образует соединения с хлоридом меди (I), не вступает в реакцию с малеиновым ангидридом, имеет несимметричное строение. Напишите уравнения приведённых реакций и назовите все органические вещества.
 - 4. Напишите уравнения реакций и назовите продукты:
 - а) гидратации октина-1 в присутствии HgSO₄;
 - б) ацетилена с этанолом (в присутствии КОН);
 - B) $CF_3 CH = CH_2 + HBr \rightarrow \cdots$
 - Γ) Na C \equiv C Na + 2C₂H₅J \rightarrow
- 5. Рассчитайте выход реакции гидрирования бутена-2, если после удаления водорода плотность полученной газовой смеси по аргону составила 1,439.

Вариант 6

- 1. Предложите схему получения поливинилхлорида из этанола. Напишите уравнения химических реакций, укажите условия проведения реакций и назовите все органические вещества, участвующие в реакциях.
- 2. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения и назовите органические вещества:

- 3. Определите строение углеводорода C_4H_8 , присоединяющего 1 моль бромоводорода в присутствии H_2O_2 с образованием соединения C_4H_9Br . Последний в условиях реакции Вюрца даёт углеводород, который при нитровании образует преимущественно третичное нитропроизводное. Напишите уравнения приведённых реакций и назовите все органические вещества.
 - 4. Закончите уравнения реакций и назовите полученные продукты:

a)
$$CH_3 - CH_2 - CHBr - CH_3$$
 $\xrightarrow{KOH(C_2H_5OH)} \cdots$

б) пропин + NaNH
$$_2 \rightarrow \cdots \xrightarrow{CH_3J} \cdots$$

5. Для проведения гидрирования была приготовлена смесь одного объёма этилена и семи объёмов водорода. Рассчитайте плотность газовой смеси после реакции по гелию, если выход реакции составил 67%.

Вариант 7

- 1. Предложите схему получения 2,3-диметилгексана из 3-метилбутановой кислоты. Напишите уравнения химических реакций, укажите условия проведения реакций и назовите все органические вещества, участвующие в реакциях.
- 2. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения и назовите органические вещества:

$$1,1$$
 - дихлорпропан $\xrightarrow{KOH(C_2H_5OH)}$ $A \xrightarrow{+NaNH_2}$ $B \rightarrow C \xrightarrow{CH_3I}$ $C \xrightarrow{H_2,t^\circ C,kt}$ $C \xrightarrow{H_2,t^\circ$

3. Определите строение углеводорода, имеющего формулу C_5H_{10} , который при взаимодействии с водным раствором дихромата калия в серной кислоте при нагревании образует смесь ацетона и уксусной кислоты. Напишите уравнение реакции этого углеводорода с пероксибензойной кислотой. На продукт последней реакции подействуйте водой в присутствии кислотного

катализатора. Напишите уравнения приведённых реакций и назовите все органические вещества.

- 4. Напишите уравнения реакций бутина-1 с реагентами, назовите продукты:
 - a) H₂ (1 моль) [Pd, PbO];
 - б) $H_2O(H^+, Hg^{2+});$
 - в) HCl (2 моль);
 - Γ) Cu(NH₃)₂Cl.
- 5. 45% алкена X вступило в реакцию гидрирования. Установите, какой углеводород был введён в реакцию, если плотность реакционной смеси по воздуху после удаления водорода составила 1,48.

Вариант 8

- 1. Предложите схему получения изопрена (2-метил-1,3-бутадиена) из ацетилена. Напишите уравнения химических реакций, укажите условия проведения реакций и назовите все органические вещества, участвующие в реакциях.
- 2. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения и назовите органические вещества:

$$2$$
 - хлорпропан $\xrightarrow{Na} X_1 \xrightarrow{+2Br_2} B \rightarrow$

$$\xrightarrow{2KOH(C_2H_5OH)} C \xrightarrow{HBr(1MOЛb)} D \xrightarrow{+H_2O} E$$

- 3. Определите строение углеводорода C_8H_{18} , при бромировании которого образуется преимущественно третичное монобромпроизводное. Углеводород C_8H_{18} может быть синтезирован по реакции Вюрца из первичного галогеналкана при образовании побочных продуктов. Напишите уравнения приведённых реакций и назовите все органические вещества.
 - 4. Напишите уравнения реакций и назовите полученные продукты:
 - а) пентена-1 с монохлоридом иода JCl;
 - б) 3,3,3-трифторпропена-1 с бромоводородом;
 - в) бутадиена-1,3 с кротоновым альдегидом

$$CH_3 - CH = CH - C$$
O

г) 3-метилпентина-1 с аммиачным раствором оксида серебра.

5. Смесь бутена-1 и водорода пропустили над катализатором при нагревании. Во сколько раз изменился объём реакционной смеси и её плотность, если в исходной смеси содержался шестикратный избыток водорода, а степень конверсии ненасыщенного соединения составила 85%?

Вариант 9

- 1. Предложите схему получения **пропена** из этилхлорида. Напишите уравнения химических реакций, укажите условия проведения реакций и назовите все органические вещества, участвующие в реакциях.
- 2. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения и назовите органические вещества:

$$2$$
 - хлорпропан $\xrightarrow{Na} X_1 \xrightarrow{+2Br_2} X_2 \rightarrow$

$$\xrightarrow{2KOH(C_2H_5OH)} X_3 \xrightarrow{HBr(1моль)} X_4 \xrightarrow{+H_2O} X_5$$

Назовите все органические вещества, участвующие в реакциях.

- 3. Определите строение углеводорода C_5H_{10} , каталитическое гидрирование которого даст 2-метилбутан, а гидробромирование в присутствии H_2O с последующей обработкой натрием (реакция Вюрца) приводит к 2,7-диметилоктану. Напишите уравнения приведённых реакций и назовите все органические вещества.
 - 4. Напишите уравнения реакций и назовите продукты:
 - а) сополимеризации изобутилена со стиролом;
 - б) озонолиза цитраля (составной части эфирных масел цитрусовых):

$$CH_3 - C = CH - CH_2 - CH_2 - C = CH - C$$

$$CH_3 - CH_3$$

$$CH_3 - CH_3$$

- в) хлорирования бутена-1 в газовой фазе при температуре 500°C.
- г) пропановой кислоты с ацетиленом (в присутствии H_3PO_4).
- 5. Из образца 1,2 дибромэтана массой 150 мг при обработке избытком магния получен этилен объёмом 16,8 мл (н.у.). Вычислите массовую долю примесей в исходном образце.

Вариант 10

- 1. Предложите схему получения **бутадиена—1,3** из пропена. Напишите уравнения химических реакций, укажите условия проведения реакций и назовите все органические вещества, участвующие в реакциях.
- 2. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения и назовите органические вещества:

Бутен – 2
$$\xrightarrow{H_2,Ni}$$
 A $\xrightarrow{\kappa pe\kappa uhc}$ этилен \rightarrow

$$\xrightarrow{Br_2}$$
 C $\xrightarrow{t^0}$ D $\xrightarrow{+CH_3OH}$ E

- 3. Определите строение углеводорода C_5H_{10} , присоединяющего 1моль бромоводорода в присутствии H_2O_2 с образованием соединения $C_5H_{11}Br$. Последний в условиях реакции Вюрца даёт углеводород, который при нитровании образует преимущественно третичное нитропроизводное. Напишите уравнения приведённых реакций и назовите все органические вещества.
 - 4. Напишите уравнения реакций и назовите продукты:
 - а) метилацетилена с циановодородом (1 моль);
 - б) нитрования 2 метилпропана;
 - в) диеновой конденсации бутадиена-1,3 с N-фенилмалеинимидом

$$CH - C$$

$$N - C_6H_5$$

$$CH - C$$

$$O$$

- г) линейной тримеризации бутина 1
- 5. Некоторый алкан ввели в фотохимическую реакцию с хлором. После реакции выделили продукт, масса которого была меньше массы исходного углеводорода на 4%. Было установлено, что продукт представляет собой монохлорид, а степень конверсии алкана составила 60%. Установите молекулярную формулу исходного углеводорода.

Вариант 11

- 1. Предложите схему получения **хлоропренового каучука** из метана. Напишите уравнения химических реакций, укажите условия проведения реакций и назовите все органические вещества, участвующие в реакциях.
- 2. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения и назовите органические вещества:

Пропен
$$\xrightarrow{Cl_2,500^{\circ}C}$$
 $\xrightarrow{Al_2O_3}$ $\xrightarrow{Al_2O_3}$ \xrightarrow{B} \xrightarrow{C} \xrightarrow{B} \xrightarrow{C} \xrightarrow{B} \xrightarrow{C} $\xrightarrow{C$

- 3. Углеводороды состава C_6H_{10} обесцвечивают бромную воду. Углеводород A даёт осадок с аммиачным раствором нитрата серебра, а при окислении образует оксид углерода (IV) и 2.2-диметилпропановую кислоту. Углеводород Б не реагирует с аммиачным раствором нитрата серебра, при окислении даёт уксусную и изомасляную кислоты. Напишите структурные формулы углеводородов. Напишите уравнения приведённых реакций и назовите все органические вещества.
 - 4. Закончите уравнения реакций, назовите полученные продукты:

a)
$$(CH_3)_2C = CH_2 \xrightarrow{HCl} \cdots$$

 $KMnO_4, H_2O, 20^0C \cdots$
 $KMnO_4 (H_2SO_4, t) \cdots$
B) $(CH_3)_2C = CHCH_3 \xrightarrow{2) H_2O(Zn)} \cdots$

5. Смесь этана, этена и этина общим объёмом 3,92 л (н.у.) пропустили последовательно через склянки с аммиачным раствором оксида серебра (I) и с бромной водой (оба реактива были в большом избытке). Масса первой склянки увеличилась на 1,95 г, а второй — на 0,7 г. Вычислите объёмные доли газов в исходной смеси.

Вариант 12

1. Предложите схему получения 1,4 - дибромбутана из этилена. Напишите уравнения химических реакций, укажите условия проведения реакций и назовите все органические вещества, участвующие в реакциях.

2. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения и назовите органические вещества:

$$CH_{3}-CH (CH_{3})-CH_{2}-COONa \xrightarrow{KOH,t^{\circ}C} X_{1} \xrightarrow{+Cl_{2},hv} X_{2} \rightarrow$$

$$\xrightarrow{KOH(C_{2}H_{5}OH)} X_{3} \xrightarrow{H_{2},t^{\circ}C,kt} X_{4} \xrightarrow{+HNO_{3(paso.)},140^{\circ}C} X_{5}$$

- 3. Установите формулу углеводорода C_5H_8 , обесцвечивающего бромную воду и водный раствор перманганата калия, который окисляется хромовой смесью в уксусную и пропановую кислоты, с аммиакатом серебра не реагирует. Напишите структурную формулу углеводорода. Напишите уравнения приведённых реакций и назовите все органические вещества.
- 4. Заполните пробелы в уравнениях реакций. Укажите условия, необходимые для их протекания, назовите органические вещества:

a)
$$CH_2 = CH_2 + \cdots \longrightarrow CH_3CH_2OH$$
;
6) $CH_3 - CH = CH_2 + HBr \xrightarrow{H_2O_2} \cdots$
B) $CH_3 - CH_2 - CH = CH_2 + \cdots \longrightarrow CH_3 - CH_2 - CH - CH_2$
OH OH
OH OH
 CH_3)₂ $CH - CH = CH - CH_3 + \cdots \longrightarrow CH_3 - CH_2 - CH_2$

5. Смесь карбида алюминия и карбида кальция общей массой 2,72 г обработали избытком соляной кислоты. Выделившуюся смесь углеводородов сожгли, а продукты сгорания пропустили через избыток раствора гидроксида бария, при этом образовалось 13,8 г осадка. вычислите объёмные доли газов в смеси углеводородов, образовавшейся при гидролизе смеси карбидов.

- 1. Предложите схему получения бутанона из карбида кальция. Напишите уравнения химических реакций, укажите условия проведения реакций и назовите все органические вещества, участвующие в реакциях.
- 2. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения и назовите органические вещества:

- 3. Установите структурную формулу углеводорода C_6H_{10} , который с аммиакатом серебра образует соединение С₆Н₉Аg, а при гидратации по Кучерову – 4 метилпентанон-2. Напишите структурную формулу углеводорода. Напишите уравнения приведённых реакций и назовите все органические вещества.
 - 4. Напишите уравнения реакций и назовите продукты:
 - а) диеновой конденсации 1,2-диметиленциклопентана с акролеином
 - б) присоединения бромоводорода к бутину-1;

в) бутин –
$$2$$
 + метанол t^0 г) нитрования 2 -хлорпропана.

- 5. Для проведения реакции гидрирования алкена водород был получен в аппарате Кипа. Рассчитайте массу технического цинка (5% примесей по массе). необходимого для получения водорода, если гидрирование прошло с выходом 70% по углеводороду, при этом получилось 29,4 г 2-метилбутана. Какие алкены можно использовать в данной реакции?

- 1. Предложите схему получения бутанона из карбида кальция. Напишите уравнения химических реакций, укажите условия проведения реакций и назовите все органические вещества, участвующие в реакциях.
- 2. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения и назовите органические вещества:

1-бром-3-метибутан
$$\longrightarrow$$
 3-метилбутен–1 $\xrightarrow{H_2, t^{\circ}C, kt}$ $A \rightarrow$
$$\xrightarrow{Br_2} B \xrightarrow{Na, t^{\circ}C} C \xrightarrow{+H_2SO_{4(\kappa on \mu, \cdot)}} D$$

74

- 3. Установите строение углеводорода C_6H_{10} , молекула которого имеет симметричное строение, не реагирует с амидом натрия в жидком аммиаке, при гидратации в присутствии сульфата ртути (II) образует несимметричное карбонильное соединение. Напишите структурную формулу углеводорода. Напишите уравнения приведённых реакций и назовите все органические вещества.
 - 4. Напишите уравнения реакций и назовите продукты:
 - а) озонолиза соединения, имеющего следующую структурную формулу:

CH₃

$$CH = CH - C = CH - CH_{3}$$

$$CH_{3}$$

$$OH$$

$$6) CH_{3} - C \equiv CH + JC1 \rightarrow \cdots$$

$$B) CF_{3} - CH = CH_{2} + HBr \rightarrow \cdots$$

$$\Gamma) Na - C \equiv C - Na + 2C_{2}H_{5}J \rightarrow \cdots$$

5. Какой объём воздуха (н. у.) необходимо затратить на полное сжигание 200 л пропан-бутановой смеси с плотностью по воздуху 1,72?

Вариант 15

- 1. Предложите схему получения **этанола** из метана. Напишите уравнения химических реакций, укажите условия проведения реакций и назовите все органические вещества, участвующие в реакциях.
 - 1. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения и назовите органические вещества:

Карбид алюминия
$$\xrightarrow{+H_2O}$$
 A $\xrightarrow{1500^{\circ}C}$ В $\xrightarrow{CuCl,NH_3}$ С $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ D $\xrightarrow{+KMnO_4,H_2SO_{4(кону.)}}$ $\xrightarrow{}$ E

- 3. Соединение C_8H_{14} обладает следующими свойствами:
 - а) обесцвечивает бромную воду;
 - б) не реагирует с $Ag(NH_3)_2OH$;
 - в) при озонолизе образует только бутановую кислоту.

Напишите структурную формулу углеводорода. Напишите уравнения приведённых реакций и назовите все органические вещества.

4. С какими из приведённых ниже соединений реагирует изобутан при заданных условиях:

- а) H_2SO_4 (конц.), $20~^{0}C$;
- б) Na, 20°С;
- в) $SO_2 + Cl_2$, освещение, 20 ${}^{0}C$;
- г) HNO₃ (разб.), 140 ⁰C;
- д) KMnO₄, H₂O, 20 ⁰C;
- e) Br₂, освещение, 20 ⁰С;
- ж) HBr;
- 3) O₂; kt

Напишите уравнения реакций, укажите условия и назовите полученные продукты.

5. Порцию этилена объёмом 2,24 л (н.у.) пропустили в 10%-ный раствор серной кислоты массой 98 г. Вычислите массу и массовую долю этанола, образовавшегося в результате реакции, приняв выход спирта равным 80 % от теоретически возможного.

- 1. Предложите схему получения **полиэтилена** из неорганического сырья. Напишите уравнения химических реакций, укажите условия проведения реакций и назовите все органические вещества, участвующие в реакциях.
- 2. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения и назовите органические вещества:

пропан
$$\rightarrow$$
 2 – бромпропан \rightarrow пропен \rightarrow пропанол - 2 \rightarrow пропен \rightarrow пропин \rightarrow бутин - 2

- 3. Установите строение алкена, при озонировании которого и последующем гидролизе озонида в присутствии цинковой пыли образуется только пропаналь, а при взаимодействии этого алкена с хлором в хлороформе при 0 °C образуется соединение в виде рацемической смеси. Напишите структурную формулу углеводорода. Напишите уравнения приведённых реакций и назовите все органические вещества.
 - 4. Напишите уравнения реакций и назовите продукты:
 - а) гидратации гексина-1 (в присутствии HgSO₄);
 - б) ацетилена с этанолом (в присутствии КОН);
 - в) фенилацетилена с аммиакатом меди (I).
 - г) озонолиза жасмона (душистого вещества жасмина):

$$CH_2 - CH = CH - CH_2 - CH_3$$
 O

5. Рассчитайте выход реакции гидрирования бутена-1, если после удаления водорода плотность полученной газовой смеси по аргону составила 1,445.

Вариант 17

- 1. Предложите схему получения **3-бромпропена** из пропана. Напишите уравнения химических реакций, укажите условия проведения реакций и назовите все органические вещества, участвующие в реакциях.
- 2. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения и назовите органические вещества:

$$1,2$$
 - дихлорбутан $\xrightarrow{t^0}$ $A \xrightarrow{+NaNH_2}$ $B \rightarrow C \xrightarrow{C_2H_5I}$ $C \xrightarrow{H_2,t^\circ C,kt}$ $D \xrightarrow{+KMnO_4,H_2O}$ E

- 3. Установите строение углеводорода C_5H_8 , который не образует соединение с хлоридом меди (I), не вступает в реакцию с малеиновым ангидридом, имеет несимметричное строение. Напишите структурную формулу углеводорода. Напишите уравнения приведённых реакций и назовите все органические вещества.
 - 4. Напишите уравнения реакций и назовите продукты:
 - а) диеновой конденсации пентадиена-1,3 с N-фенилмалеинимидом

$$CH - C$$

$$O$$

$$CH - C$$

$$O$$

$$O$$

$$6) CH_3 - CH_2 - CH_2 - CHBr - CH_3 \xrightarrow{KOH (cnupm) \atop t^0} \cdots$$

в) бутин –
$$1 + NaNH_2 \rightarrow \cdots \xrightarrow{CH_3J} \cdots$$

г) алкен(?)—
$$KMnO_4,H^+ \to H_3C-CH-CH-C + CH_3COOH$$
 CH_3 CH_3

5. Для проведения гидрирования была приготовлена смесь одного объёма этилена и семи объёмов водорода. Рассчитайте плотность газовой смеси после реакции по гелию, если выход реакции составил 70%.

- 1. Предложите схему получения бутина 2 из метана. Напишите уравнения химических реакций, укажите условия проведения реакций и назовите все органические вещества, участвующие в реакциях.
 - 2. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения и назовите органические вещества:

Пропин
$$\xrightarrow{CH_3I}$$
 A $\xrightarrow{H_2,t^{\circ}C,kt}$ В $\xrightarrow{Br_2}$ D $\xrightarrow{KOH(C_2H_5OH)}$ С $\xrightarrow{+KMnO_4,H_2SO_4}$ Е

- 3. Алкан C_6H_{14} может быть получен восстановлением (Zn/HCl) только двух алкилхлоридов (C_6H_{13} Cl) и гидрированием только двух алкенов (C_6H_{12}). Какова структура алкана? Напишите структурную формулу углеводорода. Напишите уравнения приведённых реакций и назовите все органические вещества.
 - 4. Напишите уравнения реакций и назовите продукты:
 - а) сополимеризации изобутилена с пропиленом;
 - б) петина-1 с $H_2O(H^+, Hg^{2+})$;
 - в) бутена-1 с монохлоридом йода JCl;
 - г) озонолиза коричного альдегида

$$CH = CH - C$$

5. Смесь 1 л пропена, 1 л пропана и 3 л водорода (н.у.) пропустили над никелевым катализатором. Реакция гидрирования прошла на 80 %. Вычислите плотность по воздуху полученной газовой смеси.

- 1. Предложите схему получения бутандиола -1, 2 из бутена-1. Напишите уравнения химических реакций, укажите условия проведения реакций и назовите все органические вещества, участвующие в реакциях.
- 2. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения и назовите органические вещества:

$$Metah \xrightarrow{1500^{\circ}C} A \xrightarrow{CH_3I} B \xrightarrow{+H_2O} D \rightarrow$$

$$\xrightarrow{H_2, t^{\circ}C, kt} \xrightarrow{C} \xrightarrow{t^{\circ}C, H_2SO_4} \xrightarrow{E}$$

- 3. Определите строение углеводорода C_6H_{14} , при бромировании которого образуется преимущественно третичное монобромпроизводное. Данный углеводород может синтезирован по реакции Вюрца из вторичного галогеналкана без образования побочных продуктов. Напишите структурную формулу углеводорода. Напишите уравнения приведённых реакций и назовите все органические вещества.
 - 4. Напишите уравнения реакций и назовите продукты:
 - а) 3,3,3-трифторпропена-1 с бромоводородом;
 - б) пентадиена-1,3 с кротоновым альдегидом

$$CH_3 - CH = CH - C$$
 O

- в) взаимодействия 3-метилбутина-1 с водой;
- г) бромирования на свету 2-метилпентана.
- 5. Из 350 г негашеной извести, загрязнённой песком, был получен карбид кальция, в результате гидролиза которого образовалось 44,8 л (н.у.) ацетилена. Выход продукта реакции от теоретически возможного составил 50 % на первой стадии и 80 % на второй. Вычислите массовую долю примесей в исходном веществе?

- 1. Предложите схему получения винилацетилена из оксида кальция. Напишите уравнения химических реакций, укажите условия проведения реакций и назовите все органические вещества, участвующие в реакциях.
- 2. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения и назовите органические вещества:

Ацетилен
$$\rightarrow$$
 моноацетиленид серебра \rightarrow пропин \rightarrow

2-бромпропен
$$\to$$
 2-бромпропан \to 2,3 - диметилбутан

3. Определите строение углеводорода C_6H_{12} , каталитическое гидрирование которого даёт 2,2-диметилбутан, а гидробромирование в присутствии H_2O_2 с последующей обработкой натрием (реакция Вюрца) приводит к 2,2,7,7-тетраметилоктану. Напишите структурную формулу углеводорода. Напишите уравнения приведённых реакций и назовите все органические вещества.

- 4. Напишите уравнения реакций и назовите продукты:
 - а) сополимеризации изопрена с изобутиленом;
 - б) бутин $-1 + NaNH_2$;
 - в) озонолиза следующего соединения:

$$CH_3 - C = CH - CH_2 - C = CH - CH_3$$

$$CH_3 \qquad CH_3$$

- г) диеновой конденсации бутадиена-1,3 с гексафторбутином $CF_3 C \equiv C CF_3$.
- 5. Смесь пропана и пропена (н.у.) объёмом 2л обесцвечивает 50 мл 0,25 М раствора брома в спирте. Определите объёмные доли пропана и пропена в исходной смеси.

- 1. Предложите схему получения пропанола 1 из метана. Напишите уравнения химических реакций, укажите условия проведения реакций и назовите все органические вещества, участвующие в реакциях.
- 2. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения и назовите органические вещества:

Бромэтан
$$\xrightarrow{NaOH(C_2H_5OH)}$$
 $A \xrightarrow{HCl} B \xrightarrow{Na} D \rightarrow$ $\xrightarrow{AlCl_3,t^\circ C} C \xrightarrow{-H_2} E$

- 3. Углеводороды состава C_7H_{12} обесцвечивают бромную воду. Углеводород A даёт осадок с аммиачным раствором нитрата серебра, а при окислении образует оксид углерода (IV) и 4-метилпентановую кислоту. Углеводород Б не реагирует с аммичным раствором нитрата серебра, при окислении даёт пропионовую и изомасляную кислоты. Напишите структурную формулу углеводорода. Напишите уравнения приведённых реакций и назовите все органические вещества.
 - 4. Закончите уравнения реакций и назовите продукты:

a)
$$CH_3 - CH_2 - CH = CH_2 \xrightarrow{HC1} \cdots$$

б) гексен=2
$$\xrightarrow{\frac{\text{KMnO}_4, \text{H}_2\text{O}}{20^0\text{C}}} \cdots$$
 $\xrightarrow{\frac{\text{KMnO}_4, \text{H}_2\text{SO}_4}{t^0}} \cdots$

B)
$$CH_3 - CH_2 - C = CH - CH_3$$
 $\xrightarrow{2) H_2O(Zn)} \cdots$ CH_3

5. При пропускании смеси этана, бутена-1 и ацетилена через избыток бромной воды её объём уменьшился в 4 раза. При пропускании той же смеси углеводородов того же объёма через избыток аммиачного раствора оксида серебра объём смеси уменьшился в 1,75 раза. Вычислите массовую долю алкена в исходной смеси.

- 1. Предложите схему получения бутина 1 из карбида кальция. Напишите уравнения химических реакций, укажите условия проведения реакций и назовите все органические вещества, участвующие в реакциях.
- 2. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения и назовите органические вещества:

Бутен - 1
$$\xrightarrow{Cl_2,500^{\circ}C}$$
 X_1 $\xrightarrow{2Na,t^{\circ}C}$ \xrightarrow{B} $\xrightarrow{H_2O,H_2SO_4}$ \xrightarrow{D} $\xrightarrow{Al_2O_3,300^{\circ}C}$ \xrightarrow{C} \xrightarrow{C} \xrightarrow{E} $\xrightarrow{H_2O(Zn)}$ \xrightarrow{G}

- 3. Установите строение карбоновой кислоты, которая при сплавлении со щёлочью образует 2-метилбутан, а электролиз водного раствора её соли приводит к 2,7-диметилоктану. Напишите структурную формулу карбоновой кислоты. Напишите уравнения приведённых реакций и назовите все органические вещества.
 - 4. Напишите уравнения реакций и назовите продукты:
 - а) присоединения бромоводорода к пентадиену-1;
 - б) 4-метилгексина-1 с аммиачным раствором оксида серебра;
 - в) нитрования 2,3-дибромгексана;
 - г) полимеризации изопрена (2-метилбутадиена-1,3).

5. Смесь этилена и ацетилена объёмом 5,6 л (н.у.) обработали избытком бромоводорода. В результате реакции образовалась смесь моно- и дибромидов массой 43,05 г. Вычислите массовые и объёмные доли углеводородов в исходной смеси.

Вариант 23

- 1. Предложите схему получения **2 нитробутана** из прпопановой кислоты. Напишите уравнения химических реакций, укажите условия проведения реакций и назовите все органические вещества, участвующие в реакциях.
- 2. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения и назовите органические вещества:

- 3. Установите строение алкена, при озонировании которого и последующем гидролизе озонида в присутствии цинковой пыли образуется смесь диэтилкетона и формальдегида. Напишите структурную формулу алкена. Напишите уравнения приведённых реакций и назовите все органические вещества.
 - 4. Напишите уравнения реакций и назовите продукты:
 - а) гидрирования бутина-1;
 - б) гидробромирования пропена;
 - в) метилацетилена с циановодородом (1 моль);
 - г) хлорметана с ацетиленом.
- 5. Для бромирования смеси пропена и этилена массой 20,3 г потребовался бром массой 64 г. Вычислите объёмные доли пропена и этилена в исходной смеси.

Вариант 24

1. Предложите схему получения **5** — **метилгексена** - **2** из пропина. Напишите уравнения химических реакций, укажите условия проведения реакций и назовите все органические вещества, участвующие в реакциях.

2. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения и назовите органические вещества:

$$\begin{array}{c}
 & \xrightarrow{Br_2} X_1 \xrightarrow{KOH, C_2H_5OH} X_2 \xrightarrow{H_2O, Hg^{2+}} X_3 \xrightarrow{H_2, Pt} X_4 \\
& \xrightarrow{H_2SO_4, t > 140^0} X_5
\end{array}$$

- 3. Определите строение углеводорода C_6H_{12} , присоединяющего 1моль бромоводорода в присутствии H_2O_2 с образованием соединения $C_6H_{13}Br$. Последний в условиях реакции Вюрца даёт углеводород, который при нитровании образует преимущественно третичное нитропроизводное. Напишите структурную формулу алкена. Напишите уравнения приведённых реакций и назовите все органические вещества.
 - 4. Напишите уравнения реакций и назовите продукты:
 - а) гидратации пропена;
 - б) гидробромирования пропина в присутствии H_2O_2 ;
 - в) метилацетилена с этанолом;
 - г) хлорэтана с бутином 1.
- 5. При окислении алкена массой 3,36 г образовался гликоль массой 7,44 г. Выведите молекулярную формулу этого алкена и запишите уравнение реакции его окисления.

- 1. Предложите схему получения 2-бромбутадиен-1,3 из ацетилена. Напишите уравнения химических реакций, укажите условия проведения реакций и назовите все органические вещества, участвующие в реакциях.
- 2. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения и назовите органические вещества:

$$\mathrm{A1_4C_3} \rightarrow \mathrm{CH_4} \rightarrow \mathrm{C_2H_2} \rightarrow \mathrm{C_2H_4O} \rightarrow \mathrm{C_2H_6O} \rightarrow \mathrm{C_4H_6} \rightarrow (\mathrm{C_4H_5})_n$$

- 3. В результате озонолиза углеводорода C_6H_{10} и последующей обработки (укажите какой) выделили уксусную и щавелевую кислоты. Напишите структурную формулу алкена. Напишите уравнения приведённых реакций и назовите все органические вещества.
 - 4. Напишите уравнения реакций и назовите продукты:
 - а) гидрохлорирования бутина 1;
 - б) жёсткого окисления пентена 2;

- в) этилацетилена с уксусной кислотой;
- г) хлорэтана с пропином.
- 5. Смесь этана с алкеном массой 1,86 г может присоединить 4,8 г брома. Такая же масса исходной смеси углеводородов при сжигании в избытке кислорода образует 2,912 л (н.у.) оксида углерода (IV). Определите молекулярную формулу алкена.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Артеменко А.И. Органическая химия.- М.: Высш. шк., 2002.- 559 с.
- 2. Реутов О.А., Кури А.Л., Бутин К.П. Органическая химия: в 4-х частях. Учебник для студентов вузов. М: Бином. Лаборатория знаний, 2004. 2493 с.
- 3. Ким А.М. Органическая химия: Учебное пособие для вузов. Новосибирск: Сиб. унив. изд-во. 2002.- 971 с.
- 4. Петров А.А., Бальян Х.В., Трощенко А.Т. Органическая химия: Учебник для вузов.- С Пб: «Иван Федоров», 2002.- 623 с.
- 5. Васильева н.в., Куплетская Н.Б., Смолина Т.А. Практические работы по органической химии. М.: Просвещение, 1978.
- 6. Некрасов В.В. Руководство к малому практикуму по органической химии. М.: Химия, 1975.
- 7. Аверина А.В., Снегирева А.Я. Лабораторный практикум по органической химии. М.: Высш. шк., 1983.
- 8. Артеминко А.И., Тикунова И.В., Ануфриев Е.К. Практикум по органической химии. М.: Высш. шк., 1983.
- 9. Иванов В.Г., Гева О.Н., Гаверова Ю.Г. Практикум по органической химии. М.: Academa, 2000.
- 10. Грандберг И.И. Органическая химия: учебник / И.И. Гранд- берг, Н.Л. Нам . М.: Юрайт, 2013 . 608c.
- 11. Березин Б.Д., Березин Д.Б. Курс современной органической хи¬мии: Учебное пособие для вузов. М.: Высш. шк., 1999. 768 с.
- 12. Нейланд О.Я. Органическая химия: Учебник для химических специальностей вузов. М.: Высш. шк., 1990. 751 с.
- 13. Петров А.А., Бальян Х.В., Тращенко А.Т. Органическая химия: Учебник для вузов. М.: Высш. шк., 2002. 572 с.
- 14. Потапов В.М., Татаринчик С.Н., Аверина А.В. Задачи и упраж¬нения по органической химии. М.: Изд-во Химия, 1989. 223 с.
 - 15. Терней А. Современная органическая химия: В 2 т. М.: Мир, 1981.
- 16. Шабаров Ю.С. Органическая химия: Учебник для вузов: В 2 кн. М.: Химия, 1996. 848 с.
- 17. Янковский С.А., Данилова Н.С. Задачи по органической химии. М.: Изд-во Колос, 2000. 328 с.

Учебное текстовое электронное издание

Мишурина Ольга Алексеевна Муллина Эльвира Ринатовна

УГЛЕВОДОРОДЫ АЛИФАТИЧЕСКОГО РЯДА

Учебное пособие

1,65 Мб 1 электрон. опт. диск

г. Магнитогорск, 2020 год ФГБОУ ВО «МГТУ им. Г.И. Носова» Адрес: 455000, Россия, Челябинская область, г. Магнитогорск, пр. Ленина 38

ФГБОУ ВО «Магнитогорский государственный технический университет им. Г.И. Носова» Кафедра химии Центр электронных образовательных ресурсов и дистанционных образовательных технологий e-mail: ceor_dot@mail.ru