Ю.А. Извеков В.В. Шеметова

СБОРНИК КОНТРОЛЬНЫХ ЗАДАНИЙ ПО МАТЕМАТИКЕ. ЧАСТЬ 2

Утверждено Редакционно-издательским советом университета в качестве практикума

Рецензенты:

доктор физико-математических наук, заведующий кафедры теоретической и математической физики, ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

Е.А. Елфимова

кандидат физико-математических наук, доцент кафедры прикладной математики и информатики, ФГБОУ ВО «Магнитогорский государственный технический университет им. Г.И. Носова»

О.А. Торшина

Извеков Ю.А., Шеметова В.В.

Сборник контрольных заданий по математике. Часть 2 [Электронный ресурс]: практикум / Юрий Анатольевич Извеков, Вероника Владимировна Шеметова; ФГБОУ ВО «Магнитогорский государственный технический университет им. Г.И. Носова». – Электрон. текстовые дан. (1,28 Мб). – Магнитогорск: ФГБОУ ВО «МГТУ им. Г.И. Носова», 2019. – 1 электрон. опт. диск (CD-R). – Систем. требования: IBM PC, любой, более 1 GHz; 512 Мб RAM; 10 Мб HDD; МЅ Windows XP и выше; Adobe Reader 8.0 и выше; CD/DVD-ROM дисковод; мышь. – Загл. с титул. экрана.

Практикум состоит из пяти разделов: дифференциальное исчисление функций нескольких переменных, интегральное исчисление функций нескольких переменных, комплексные числа, дифференциальные уравнения, ряды. Все эти разделы включены в программу дисциплин «Математика», «Алгебра и геометрия», «Математический анализ» технических и естественнонаучных направлений подготовки бакалавров и изучаются традиционно во втором и третьем семестрах.

Каждый раздел содержит по 30 вариантов контрольных заданий, направленных на отработку навыков решения различных задач из перечисленных разделов. Данный практикум может быть использован для организации и контроля самостоятельной работы студентов как очной, так и заочной форм обучения.

УДК 517

- © Извеков Ю.А., Шеметова В.В., 2019
- © ФГБОУ ВО ««Магнитогорский государственный технический университет им. Г.И. Носова», 2019

Содержание

ВВЕДЕНИЕ	4
Раздел 1. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ	І НЕСКОЛЬКИХ
ПЕРЕМЕННЫХ	5
Раздел 2. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ	НЕСКОЛЬКИХ
ПЕРЕМЕННЫХ	26
Раздел 3. КОМПЛЕКСНЫЕ ЧИСЛА	44
Раздел 4. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ	63
Библиографический список	121

ВВЕДЕНИЕ

Данный практикум состоит из пяти разделов. Все эти разделы включаются в программы дисциплины «Математика» всех технических и естественнонаучных направлений подготовки бакалавров и изучаются традиционно во втором и третьем семестрах.

В раздел 1 «Дифференциальное исчисление функций нескольких переменных» включены следующие типы заданий: область определения функции двух переменных; частные производные функций двух и трех переменных; производная по направлению, градиент; исследование функции на экстремум; задачи на нахождение наибольшего и наименьшего значений функции в замкнутой ограниченной области.

Раздел 2 «Интегральное исчисление функций нескольких переменных» содержит задачи на вычисление двойных и тройных интегралов; геометрические приложения: нахождение площадей фигур, объемов тел.

Раздел 3 «Комплексные числа» состоит из контрольных заданий по темам: действия над комплексными числами в алгебраической и тригонометрической формах; решение алгебраических уравнений над полем комплексных чисел; множества точек на комплексной плоскости; задачи на доказательство утверждений, связанных с комплексными числами.

Раздел 4 «Дифференциальные уравнения» включает в себя контрольные задания по темам: дифференциальные уравнения с разделяющимися переменными; однородные ДУ первого порядка; линейные ДУ первого порядка; уравнения Бернулли; ДУ в полных дифференциалах; ДУ высших порядков, допускающие понижение порядка; линейные однородные ДУ с постоянными коэффициентами; линейные неоднородные ДУ с постоянными коэффициентами и специальной правой частью; метод Лагранжа вариации произвольных постоянных; системы ДУ.

В раздел 5 «Ряды» включены контрольные задания по темам: определение сходящегося числового ряда; необходимый признак и достаточные признаки сходимости числовых рядов; функциональные ряды; разложение функции в степенной ряд; применение степенных рядов для нахождения приближенных значений функций, определенных интегралов, решения дифференциальных уравнений; разложение функции в ряд Фурье.

В каждом разделе предлагается 30 вариантов контрольных заданий. Данный практикум может быть эффективно использован при проведении аудиторных и домашних контрольных работ, при проведении зачетов и экзаменов.

Раздел 1. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Вариант 1

Задание 1. Найти область определения функции двух переменных и изобразить ее в координатной плоскости 0xy:

$$z = \ln(9 - x^2 - y^2).$$

Задание 2. Найти частные производные первого порядка следующих функций:

- 1) $z = 5x^3y^4 + \sin(2xy + 5y^6)$;
- 2) $u = \arcsin(x^2 + xy^3 + xz + 4z)$.

Задание 3. Найти производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ сложной функции:

$$z = \frac{x^2}{y}, x = \sqrt{u} + 2v, y = u^2v.$$

Задание 4. Показать, что функция

$$z = \cos y + (y - x)\sin y$$

удовлетворяет уравнению

$$(x - y)\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial z}{\partial y}.$$

Задание 5. Дана функция z = f(x; y), вектор \vec{l} и точка A:

$$z = x^2 + 3xy + 5y^2$$
; $\vec{l} = -3\vec{i} + 4\vec{j}$; $A(2; 1)$.

Найти производную по направлению \vec{l} , градиент функции и его модуль в точке A.

Задание 6. Составить уравнение касательной плоскости и нормали к поверхности

$$4x^2 + 2y^2 = z^2$$

в точке A(1; 1; 6).

Задание 7. Исследовать на экстремум функцию двух независимых переменных: $z = 2x^2 - 5xy + 2y^3 - 3x + 4y$.

Задание 8. Найти наибольшее и наименьшее значение функции z = f(x; y) в замкнутой ограниченной области D:

$$z = x - 2y + 5$$
,
 $D: y \ge 0$; $x + y \le 1$.

Вариант 2

Задание 1. Найти область определения функции двух переменных и изобразить ее в координатной плоскости 0xy:

$$z = \arcsin x + \arccos y$$
.

Задание 2. Найти частные производные первого порядка следующих функций:

- 1) $z = -2x^4y^5 + \cos(3xy + 7x^6)$;
- 2) $u = \ln(z + 4) \sin(2x + y^3)$.

Задание 3. Найти производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ сложной функции:

$$z = \frac{y^2}{x}, x = \sqrt{u} + 2v, y = u^2v.$$

Задание 4. Показать, что функция

$$z = \frac{x}{y}$$

удовлетворяет уравнению

$$x\frac{\partial^2 z}{\partial x \partial y} - \frac{\partial z}{\partial y} = 0.$$

Задание 5. Дана функция z = f(x; y), вектор \vec{l} и точка A:

$$z = x^2 + 4xy - 3y^2$$
; $\vec{l} = 2\vec{i} - 5\vec{j}$; $A(2; -1)$.

Найти производную по направлению \vec{l} , градиент функции и его модуль в точке A.

Задание 6. Составить уравнение касательной плоскости и нормали к поверхности

$$x^2 + y^2 = z^2$$

в точке A(3; 4; 5).

Задание 7. Исследовать на экстремум функцию двух независимых переменных:

$$z = -\frac{1}{2}x^2 + 8xy - y^3 - 14x - 12y.$$

Задание 8. Найти наибольшее и наименьшее значение функции z = f(x; y) в замкнутой ограниченной области D:

$$z = 3 - 2x^2 - xy - y^2$$
,
 $D: y \ge 0$; $x \le 1$; $y \le x$.

Вариант 3

Задание 1. Найти область определения функции двух переменных и изобразить ее в координатной плоскости 0xy:

$$z = \sqrt{y^2 - 1} + \sqrt{1 - x^2}.$$

Задание 2. Найти частные производные первого порядка следующих функций:

1)
$$z = 6x^2y^4 + \sin(3x^2y - 2y^4)$$
;

2)
$$u = x^2y - y^3z + \frac{x}{z}$$
.

3adaние 3. Найти производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ сложной функции:

$$z = \ln \frac{x}{y}, x = u + \sqrt[3]{v}, y = u^2 v.$$

Задание 4. Показать, что функция

$$z = e^x \cos y$$

удовлетворяет уравнению

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0.$$

Задание 5. Дана функция z = f(x; y), вектор \vec{l} и точка A:

$$z = 2x^2 - xy + 3y^2$$
; $\vec{l} = -\vec{i} + 7\vec{j}$; $A(-3; 2)$.

Найти производную по направлению \vec{l} , градиент функции и его модуль в точке A.

Задание 6. Составить уравнение касательной плоскости и нормали к поверхности

$$z = 5x^2 - y^2 + 10x - 2y - 7$$

в точке A(1; 2; 0).

Задание 7. Исследовать на экстремум функцию двух независимых переменных: $z = 3x^2 + 10xy + 6y^3 + 2x + 2y - 1.$

Задание 8. Найти наибольшее и наименьшее значение функции z = f(x; y) в замкнутой ограниченной области *D*:

$$z = x^2 + 2xy - 2x + 8y,$$

D: $x \le 0$; $y \le 0$; $x + y + 3 \ge 0$.

Вариант 4

Задание 1. Найти область определения функции двух переменных и изобразить ее в координатной плоскости Оху:

$$z = \log_5(x^2 + y^2 - 16).$$

Задание 2. Найти частные производные первого порядка следующих функций:

- 1) $z = -4x^7y^3 + \cos(5xy + 7y^3)$;
- 2) $u = e^z \sin(6x 8y)$.

Задание 3. Найти производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ сложной функции:

$$z = e^{x+y}, x = \sin u + \sqrt{v}, y = uv.$$

Задание 4. Показать, что функция

$$z = xy \ln x$$

удовлетворяет уравнению

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}.$$

Задание 5. Дана функция z = f(x; y), вектор \vec{l} и точка A:

$$z = x^2 - 6xy - y^2$$
; $\vec{l} = -3\vec{i} - 4\vec{j}$; $A(-2; -3)$.

Найти производную по направлению \vec{l} , градиент функции и его модуль в точке А.

Задание 6. Составить уравнение касательной плоскости и нормали к поверхно-

$$x^3 + y^3 + z^3 + xyz = 6$$

в точке A(1; 2; -1).

Задание 7. Исследовать на экстремум функцию двух независимых переменных: $z = 2x^3 + y^2 + 6xy + 12x$.

Задание 8. Найти наибольшее и наименьшее значение функции z = f(x; y) в замкнутой ограниченной области D:

$$z = x^2 + x + 3y^2 - y,$$

D: $x \le 0$; $y \ge 0$; $x - y \le 1$.

Вариант 5

Задание 1. Найти область определения функции двух переменных и изобразить ее в координатной плоскости Оху:

$$z = \arcsin \frac{x}{v}$$
.

Задание 2. Найти частные производные первого порядка следующих функций:

1)
$$z = 3x^5y^4 + \sin(7xy^2 + 9x^6)$$
;

2)
$$u = \sqrt{x^2 + y^2 + z^2}$$
.

 $3adaние\ 3.$ Найти производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ сложной функции:

$$z = \cos^2(x + y), x = e^{uv}, y = u^2 + v.$$

Задание 4. Показать, что функция

$$z = \ln(x^2 + y^2 + 2x + 1)$$

удовлетворяет уравнению

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0.$$

Задание 5. Дана функция z = f(x; y), вектор \vec{l} и точка A:

$$z = 4x^2 - 2xy + 3y^2$$
; $\vec{l} = 5\vec{i} - 4\vec{j}$; $A(3; -1)$.

Найти производную по направлению \vec{l} , градиент функции и его модуль в точке A.

Задание 6. Составить уравнение касательной плоскости и нормали к поверхности

$$z = 3 - x^2 + 6y^2 - 4y + 1$$

в точке A(1; 2; 19).

Задание 7. Исследовать на экстремум функцию двух независимых переменных: $z = 3x^2 - 6xy - y^3 - 12x + 12y$.

Задание 8. Найти наибольшее и наименьшее значение функции z = f(x; y) в замкнутой ограниченной области D:

$$z = x^2 + 2xy + y^2 + 4x$$
,
 $D: x \le 0; y \le 0; x + y \ge -2$.

Вариант 6

Задание 1. Найти область определения функции двух переменных и изобразить ее в координатной плоскости 0xy:

$$z = \sqrt{x^2 - 3y + 6}.$$

Задание 2. Найти частные производные первого порядка следующих функций:

- 1) $z = -6x^5y^7 + \cos(6x^2y^2 4y^2)$;
- 2) u = xy + yz + xz.

Задание 3. Найти производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ сложной функции:

$$z = \operatorname{arctg}(x^2 + y), x = uv, y = \frac{u}{v}.$$

Задание 4. Показать, что функция

$$z = x \ln y$$

удовлетворяет уравнению

$$\frac{\partial^2 z}{\partial x \partial y} + \frac{y}{x} \frac{\partial^2 z}{\partial y^2} = 0.$$

Задание 5. Дана функция z = f(x; y), вектор \vec{l} и точка A:

$$z = -x^2 - 4xy + 2y^2$$
; $\vec{l} = -6\vec{i} + 2\vec{j}$; $A(-4; 1)$.

Найти производную по направлению \vec{l} , градиент функции и его модуль в точке A.

Задание 6. Составить уравнение касательной плоскости и нормали к поверхности

$$x^2y^2 + 2x + z^3 = 16$$

в точке A(2; 1; 2).

Задание 7. Исследовать на экстремум функцию двух независимых переменных:

$$z = 8x^3 - 12xy - y^3 - 1.$$

Задание 8. Найти наибольшее и наименьшее значение функции z = f(x; y) в замкнутой ограниченной области *D*:

$$z = x^3 + y^3 - 3xy$$
,
D: $-1 \le y \le 2$; $0 \le x \le 2$.

Вариант 7

Задание 1. Найти область определения функции двух переменных и изобразить ее в координатной плоскости Оху:

$$z = \ln(25 - x^2 - y^2).$$

Задание 2. Найти частные производные первого порядка следующих функций:

1)
$$z = 8x^3y^5 + \sin(4xy - 5y^9)$$
;
2) $u = e^{x(x^2+y^2+z^2)}$.

2)
$$u = e^{x(x^2+y^2+z^2)}$$

Задание 3. Найти производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ сложной функции:

$$z = e^{2x+y^2} - 4xy, x = u + v, y = u^3v.$$

Задание 4. Показать, что функция

$$z = \sqrt{x^2 + y}$$

удовлетворяет уравнению

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}.$$

Задание 5. Дана функция z = f(x; y), вектор \vec{l} и точка A:

$$z = 2x^2 - 3xy - 5y^2$$
; $\vec{l} = -3\vec{i} - 2\vec{j}$; $A(4; -5)$.

Найти производную по направлению \vec{l} , градиент функции и его модуль в точке А.

Задание 6. Составить уравнение касательной плоскости и нормали к поверхно-

$$xy^2 + z^3 = 12$$

в точке A(1; 2; 2).

Задание 7. Исследовать на экстремум функцию двух независимых переменных:

$$z = 3x^3 + 7xy - \frac{7}{2}y^2 - 60x + 2.$$

Задание 8. Найти наибольшее и наименьшее значение функции z = f(x; y) в замкнутой ограниченной области *D*:

$$z = x^2 + 2y^2 + 1,$$

 $D: y \ge 0; x \ge 0; x + y - 3 \le 0.$

Вариант 8

Задание 1. Найти область определения функции двух переменных и изобразить ее в координатной плоскости Оху:

$$z = x^3y + \sqrt[4]{x^2 + y^2 - 4}$$
.

Задание 2. Найти частные производные первого порядка следующих функций: 1) $z = 5x^8y^9 - \cos(3xy + 4x^6)$;

 $2) u = (\sin x)^{yz}.$

Задание 3. Найти производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ сложной функции:

$$z = \ln \frac{x^2}{y}, x = uv, y = u^2 + v^3.$$

Задание 4. Показать, что функция

$$z = \frac{y^2}{3x} + \arcsin(xy)$$

удовлетворяет уравнению

$$x^2 \frac{\partial z}{\partial x} - xy \frac{\partial z}{\partial y} + y^2 = 0.$$

Задание 5. Дана функция z = f(x; y), вектор \vec{l} и точка A:

$$z = 4x^2 - 3xy - 2y^2$$
; $\vec{l} = -5\vec{i} - 3\vec{j}$; $A(-2; 6)$.

Найти производную по направлению \vec{l} , градиент функции и его модуль в точке А.

Задание 6. Составить уравнение касательной плоскости и нормали к поверхно-

$$z = x^2 - y^3 \mp 2y + 10$$

в точке A(0; 2; 6).

Задание 7. Исследовать на экстремум функцию двух независимых переменных: $z = x^3 - 5xy + 5y^2 + 7x - 15y.$

Задание 8. Найти наибольшее и наименьшее значение функции z = f(x; y) в замкнутой ограниченной области D:

$$z = x^3 + 8y^3 - 6xy + 1$$
,
 $D: -1 \le y \le 1$; $0 \le x \le 2$.

Вариант 9

Задание 1. Найти область определения функции двух переменных и изобразить ее в координатной плоскости Оху:

$$z = \frac{3x^2 + xy}{\sqrt{x - y + 1}}.$$

Задание 2. Найти частные производные первого порядка следующих функций:

- 1) $z = -10x^3y^6 \sin(7xy + 2y^{\hat{4}})$; 2) $u = \ln(x^2 + y^2 + z^2 + 1)$.

 $3adaние\ 3.$ Найти производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ сложной функции:

$$z = x^{\sin y}, x = \arccos \sqrt{uv}, y = \arcsin(u - v).$$

Задание 4. Показать, что функция

$$z = x^y$$

удовлетворяет уравнению

$$y\frac{\partial^2 z}{\partial x \partial y} = (1 + y \ln x) \frac{\partial z}{\partial x}.$$

Задание 5. Дана функция z = f(x; y), вектор \vec{l} и точка A:

$$z = -x^2 - 5xy + 7y^2$$
; $\vec{l} = 3\vec{i} + 4\vec{j}$; $A(-2, -6)$.

Найти производную по направлению \vec{l} , градиент функции и его модуль в точке А.

Задание 6. Составить уравнение касательной плоскости и нормали к поверхности

$$x^2 + y^2 - z = 10$$

в точке A(1; 1; -8).

Задание 7. Исследовать на экстремум функцию двух независимых переменных: $z = x^3 + 6xy + 3y^2 - 18x - 18y$.

Задание 8. Найти наибольшее и наименьшее значение функции z = f(x; y) в замкнутой ограниченной области D:

$$z = x^3 + y^3 - 9xy + 27$$
,
 $D: 0 \le y \le 4$; $0 \le x \le 4$.

Вариант 10

Задание 1. Найти область определения функции двух переменных и изобразить ее в координатной плоскости *0xy*:

$$z = \sqrt{4 - x - (y - 2)^2}.$$

Задание 2. Найти частные производные первого порядка следующих функций:

1)
$$z = -3x^3y^4 + \cos(5xy^2 + x^8)$$
;

2)
$$u = \frac{xy}{z} \ln(x^2 + y^2 + z^2)$$
.

Задание 3. Найти производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ сложной функции:

$$z = \arcsin(2x + y^2), x = e^u - v, y = \cos(uv).$$

Задание 4. Показать, что функция

$$z = \operatorname{tg} xy + \frac{x}{y}$$

удовлетворяет уравнению

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} - y^{2} \frac{\partial^{2} z}{\partial y^{2}} + x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y} = 0.$$

 $\it 3adahue 5.$ Дана функция z=f(x;y), вектор $\vec l$ и точка $\it A$:

$$z = 4x^2 + 3xy + 7y^2$$
; $\vec{l} = 3\vec{i} - 8\vec{j}$; $A(-1; 2)$.

Найти производную по направлению \vec{l} , градиент функции и его модуль в точке A.

Задание 6. Составить уравнение касательной плоскости и нормали к поверхности

$$z^2 - 4y + 1 = 0$$

в точке $A(0; \frac{1}{4}; 0)$.

Задание 7. Исследовать на экстремум функцию двух независимых переменных:

$$z = x^3 - 6xy - 8y^3 + 1.$$

Задание 8. Найти наибольшее и наименьшее значение функции z = f(x; y) в замкнутой ограниченной области D:

$$z = 5x^{2} - 3xy + y^{2} + 4,$$

D: $y \ge -1$; $x \ge -1$; $x + y \le 1$.

Вариант 11

Задание 1. Найти область определения функции двух переменных и изобразить ее в координатной плоскости Оху:

$$z = \frac{3}{\sqrt{y - \sqrt{x}}}$$

Задание 2. Найти частные производные первого порядка следующих функций:

1)
$$z = 2x^6y^4 + \sin(-3xy + 4y^5)$$
;
2) $u = \sqrt{x^2 + y^2 + z^2 - 2xz}$.

2)
$$u = \sqrt{x^2 + y^2 + z^2 - 2xz}$$

Задание 3. Найти производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ сложной функции:

$$z = x^3 + y^3, x = uv, y = \frac{u}{v}.$$

Задание 4. Показать, что функция

$$z = \arcsin(xy)$$

удовлетворяет уравнению

$$\frac{x}{y} \cdot \frac{\partial^2 z}{\partial x^2} + \frac{y}{x} \cdot \frac{\partial^2 z}{\partial y^2} - 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{2}{y} \cdot \frac{\partial z}{\partial x} = 0.$$

Задание 5. Дана функция z = f(x; y), вектор \vec{l} и точка A:

$$z = 3x^2 - 2xy + 4y^2$$
; $\vec{l} = -6\vec{i} - 4\vec{j}$; $A(-3; 1)$.

Найти производную по направлению \vec{l} , градиент функции и его модуль в точке А.

Задание 6. Составить уравнение касательной плоскости и нормали к поверхности

$$x^2 + y^2 + z^2 = 4$$

в точке $A(1; 1; \sqrt{2})$.

Задание 7. Исследовать на экстремум функцию двух независимых переменных:

$$z = x^3 + xy^2 - 6xy + 1$$
.

Задание 8. Найти наибольшее и наименьшее значение функции z = f(x; y) в замкнутой ограниченной области D:

$$z = x^2 + y^2 + 4y - 6x,$$

D: $-3 \le y \le 2$; $1 \le x \le 4$.

Вариант 12

Задание 1. Найти область определения функции двух переменных и изобразить ее в координатной плоскости Оху:

$$z = \arcsin(6x + 2y - 7).$$

Задание 2. Найти частные производные первого порядка следующих функций:

1)
$$z = 3x^7y^5 - 2\cos(5xy - 7x^2)$$
;

2)
$$u = 2xy + e^{xyz}$$
.

 $\it 3adahue~3.$ Найти производные $\it {dz\over du}$ и $\it {dz\over dv}$ сложной функции:

$$z = \cos(xy)$$
, $x = ue^v$, $y = v \ln u$.

Задание 4. Показать, что функция

$$z = xe^{-\frac{y}{x}}$$

удовлетворяет уравнению

$$x^{2} \cdot \frac{\partial^{2} z}{\partial x^{2}} + y^{2} \cdot \frac{\partial^{2} z}{\partial y^{2}} + 2xy \frac{\partial^{2} z}{\partial x \partial y} = 0.$$

Задание 5. Дана функция z = f(x; y), вектор \vec{l} и точка A:

$$z = -3x^2 + 4xy - 5y^2$$
; $\vec{l} = 2\vec{i} + 7\vec{j}$; $A(-5; 3)$.

Найти производную по направлению \vec{l} , градиент функции и его модуль в точке A.

Задание 6. Составить уравнение касательной плоскости и нормали к поверхности

$$x^2 + 5y^2 + z^2 = 10$$

в точке A(1; -1; 2).

Задание 7. Исследовать на экстремум функцию двух независимых переменных: $z = x^3 + 4xy - y^3 + 5$.

Задание 8. Найти наибольшее и наименьшее значение функции z = f(x; y) в замкнутой ограниченной области D:

$$z = x^2 + 2xy - 2x + 3y$$
,
 $D: 0 \le y \le 2$; $0 \le x \le 1$.

Вариант 13

Задание 1. Найти область определения функции двух переменных и изобразить ее в координатной плоскости 0xy:

$$z = \sqrt{x^2 - 9} + \sqrt{9 - y^2}.$$

Задание 2. Найти частные производные первого порядка следующих функций:

1) $z = -5x^6y^4 - 2\sin(3xy^9 + 5x^2)$;

2)
$$u = \sqrt{x^2 + y^2 - z^2}$$
.

3adaние 3. Найти производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ сложной функции:

$$z = \ln(x^2 + y^2)$$
, $x = \frac{u}{2v}$, $y = u^2 + 3v$.

Задание 4. Показать, что функция

$$z = \sin(x + 3y)$$

удовлетворяет уравнению

$$\frac{\partial^2 z}{\partial x^2} = 9 \frac{\partial^2 z}{\partial y^2}.$$

 $\it 3adahue 5.$ Дана функция z=f(x;y), вектор $\vec l$ и точка $\it A$:

$$z = 7x^2 - xy + 2y^2$$
; $\vec{l} = -2\vec{i} - 9\vec{j}$; $A(-2; -4)$.

Найти производную по направлению \vec{l} , градиент функции и его модуль в точке A.

Задание 6. Составить уравнение касательной плоскости и нормали к поверхности

$$x^2 + 3y^2 - 9z = 0$$

в точке $A(2; 2; \frac{16}{9})$.

Задание 7. Исследовать на экстремум функцию двух независимых переменных:

$$z = x^2 y^2 + \frac{y}{x} - 5y.$$

Задание 8. Найти наибольшее и наименьшее значение функции z = f(x; y) в замкнутой ограниченной области *D*:

$$z = x^2 - 2x + y^2 - 2y + 2$$
,
 $D: x \ge 0$; $y \ge 0$; $3x + 4y \le 12$.

Вариант 14

Задание 1. Найти область определения функции двух переменных и изобразить ее в координатной плоскости Оху:

$$z = \sqrt{16 - x^2 - y^2}$$
.

Задание 2. Найти частные производные первого порядка следующих функций:

- 1) $z = -3x^2y^6 + 2\sin(xy 8y^7)$:
- 2) $u = \arcsin(xyz)$.

Задание 3. Найти производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ сложной функции:

$$z = e^{xy}, x = u^3 + \cos v, y = uv^2.$$

Задание 4. Показать, что функция

$$z = xe^y \cos(xy)$$

удовлетворяет уравнению

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}.$$

Задание 5. Дана функция z = f(x; y), вектор \vec{l} и точка A:

$$z = 3x^2 - 6xy + 4y^2$$
; $\vec{l} = 2\vec{i} - 4\vec{j}$; $A(-2; -8)$.

Найти производную по направлению \vec{l} , градиент функции и его модуль в точке А.

Задание 6. Составить уравнение касательной плоскости и нормали к поверхности

$$2x^2 + 3y^2 = z^2$$

в точке A(1; 1; 5).

Задание 7. Исследовать на экстремум функцию двух независимых переменных:

$$z = 7 - x - y^2 + 3y + y\sqrt{x}.$$

Задание 8. Найти наибольшее и наименьшее значение функции z = f(x; y) в замкнутой ограниченной области *D*:

$$z = x + 2y + 1,$$

 $D: y \le 0; x \ge 0; x - y \le 1.$

Вариант 15

Задание 1. Найти область определения функции двух переменных и изобразить ее в координатной плоскости Оху:

$$z = \ln(x^2 + y^2 - 1).$$

Задание 2. Найти частные производные первого порядка следующих функций:

- 1) $z = 4x^5y^4 \cos(3xy 2x^7)$;
- 2) u = 2xz + tg(yz).

 $z = \cos \frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ сложной функции: $z = \cos \frac{x^3}{y}$, x = uv, $y = 3u + v^4$.

$$z = \cos\frac{x^3}{y}, x = uv, y = 3u + v^4.$$

Задание 4. Показать, что функция

$$z = \ln(x + e^{-y})$$

удовлетворяет уравнению

$$\frac{\partial z}{\partial x} \cdot \frac{\partial^2 z}{\partial x \partial y} - \frac{\partial z}{\partial y} \cdot \frac{\partial^2 z}{\partial x^2} = 0.$$

Задание 5. Дана функция z = f(x; y), вектор \vec{l} и точка A:

$$z = 5x^2 - 3xy + 2y^2$$
; $\vec{l} = -7\vec{i} + 6\vec{j}$; $A(-5; 1)$.

Найти производную по направлению \vec{l} , градиент функции и его модуль в точке А.

Задание 6. Составить уравнение касательной плоскости и нормали к поверхности

$$4x^2 + 3y^2 = z^2$$

в точке A(1; 1; 7).

Задание 7. Исследовать на экстремум функцию двух независимых переменных: $z = xy - 4\ln(y - 7) - x^2$.

Задание 8. Найти наибольшее и наименьшее значение функции z = f(x; y) в замкнутой ограниченной области *D*:

$$z = 10 + 2xy - x^2$$
,
 $D: y \ge 0$; $y \le 4 - x^2$.

Вариант 16

Задание 1. Найти область определения функции двух переменных и изобразить ее в координатной плоскости Оху:

$$z = x^3 + y^2 + \sqrt{16 - y^2 - x^2}.$$

Задание 2. Найти частные производные первого порядка следующих функций:

- 1) $z = 2x^4y^5 + 3\sin(7xy + 5x^3)$;
- $2) u = xyz^4 + \operatorname{ctg}(xz).$

3адание 3. Найти производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ сложной функции: $z = \ln(x^2 + y^2)$, $x = u^3 v^2$, y = 3u - 2v.

$$z = \ln(x^2 + y^2)$$
, $x = u^3v^2$, $y = 3u - 2v$.

Задание 4. Показать, что функция

$$z = \frac{y}{y^2 - 4x^2}$$

удовлетворяет уравнению

$$\frac{\partial^2 z}{\partial x^2} = 4 \frac{\partial^2 z}{\partial y^2}.$$

Задание 5. Дана функция z = f(x; y), вектор \vec{l} и точка A:

$$z = -2x^2 - 4xy + 5y^2$$
; $\vec{l} = 3\vec{i} - 4\vec{j}$; $A(5; -6)$.

Найти производную по направлению \vec{l} , градиент функции и его модуль в точке А.

Задание 6. Составить уравнение касательной плоскости и нормали к поверхности

$$3x^2 + 2y^2 = z^2$$

в точке A(1; 1; 5).

Задание 7. Исследовать на экстремум функцию двух независимых переменных:

$$z = x^3 + y^3 - 15xy$$
.

Задание 8. Найти наибольшее и наименьшее значение функции z = f(x; y) в замкнутой ограниченной области D:

$$z = x^2 - xy + y^2 - 4x$$
,
 $D: y \ge 0; x \ge 0; 2x + 3y \le 12$.

Вариант 17

Задание 1. Найти область определения функции двух переменных и изобразить ее в координатной плоскости 0xy:

$$z = 1 + 5xy - \ln(4 - x^2 - y^2).$$

Задание 2. Найти частные производные первого порядка следующих функций:

- 1) $z = -7x^3y^5 + \cos(8xy^4 + 5x)$;
- 2) $u = 3xy^4z + \ln(x + y + z)$.

Задание 3. Найти производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ сложной функции:

$$z = tg(xy)$$
, $x = e^{u} + 2v$, $y = u + v$.

Задание 4. Показать, что функция

$$z = \ln \frac{1}{\sqrt{x^2 + y^2}}$$

удовлетворяет уравнению

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0.$$

Задание 5. Дана функция z = f(x; y), вектор \vec{l} и точка A:

$$z = -7x^2 - 2xy - 3y^2$$
; $\vec{l} = \vec{i} - 5\vec{j}$; $A(-2; -1)$.

Найти производную по направлению \vec{l} , градиент функции и его модуль в точке A.

Задание 6. Составить уравнение касательной плоскости и нормали к поверхности

$$x^2 + 5y^2 = z^2$$

в точке A(2; 1; 3).

Задание 7. Исследовать на экстремум функцию двух независимых переменных:

$$z = x^2 + xy + y^2 - 3x - 6y.$$

Задание 8. Найти наибольшее и наименьшее значение функции z = f(x; y) в замкнутой ограниченной области D:

$$z = x^2 + xy$$
,
 $D: 0 \le y \le 3$; $-1 \le x \le 1$.

Вариант 18

Задание 1. Найти область определения функции двух переменных и изобразить ее в координатной плоскости 0xy:

$$z = \arccos(2x + 4y - 3).$$

Задание 2. Найти частные производные первого порядка следующих функций:

- 1) $z = 4x^3y^4 + \sin(7xy 3y^8)$;
- 2) $u = xz + \arcsin(xyz)$.

Задание 3. Найти производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ сложной функции:

$$z = \sqrt{x^2 - y^2}$$
, $x = u^v$, $y = v \ln u$.

Задание 4. Показать, что функция

$$z = e^x(x\cos y - y\sin y)$$

удовлетворяет уравнению

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0.$$

Задание 5. Дана функция z = f(x; y), вектор \vec{l} и точка A:

$$z = 2x^2 - 4xy - 8y^2$$
; $\vec{l} = 3\vec{i} - 5\vec{j}$; $A(2; -3)$.

Найти производную по направлению \vec{l} , градиент функции и его модуль в точке A.

Задание 6. Составить уравнение касательной плоскости и нормали к поверхности

$$36x^2 + y^2 = z$$

в точке A(1; 6; 72).

Задание 7. Исследовать на экстремум функцию двух независимых переменных: $z = -x^2y + xy - xy^2$.

Задание 8. Найти наибольшее и наименьшее значение функции z = f(x; y) в замкнутой ограниченной области D:

$$z = 2xy - 2y - 4x$$
,
 $D: y \ge 0$; $x \ge 0$; $x + y \le 3$.

Вариант 19

Задание 1. Найти область определения функции двух переменных и изобразить ее в координатной плоскости 0xy:

$$z = \frac{xy^4}{\sqrt{y - x^2 + 5}}.$$

Задание 2. Найти частные производные первого порядка следующих функций:

1)
$$z = -5x^6y^4 + \cos(9xy + 5x^2)$$
;

2)
$$u = yz + \frac{1}{x^2 + y^2 + z^2}$$
.

3adaние 3. Найти производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ сложной функции:

$$z = \sqrt{x + y}, x = u \operatorname{tg} v, y = u \operatorname{ctg} v.$$

Задание 4. Показать, что функция

$$z = e^{xy}$$

удовлетворяет уравнению

$$x^2 \frac{\partial^2 z}{\partial x^2} - y^2 \frac{\partial^2 z}{\partial y^2} = 0.$$

Задание 5. Дана функция z = f(x; y), вектор \vec{l} и точка A:

$$z = x^2 - 7xy + 3y^2$$
; $\vec{l} = 2\vec{i} - 4\vec{j}$; $A(1; -5)$.

Найти производную по направлению \vec{l} , градиент функции и его модуль в точке A.

Задание 6. Составить уравнение касательной плоскости и нормали к поверхности

$$2y^2 - 5z^2 - 20 = 0$$

в точке $A(0; \sqrt{10}; 0)$.

Задание 7. Исследовать на экстремум функцию двух независимых переменных:

$$z = -x^2 - xy + y^2 + 3x + 6y.$$

Задание 8. Найти наибольшее и наименьшее значение функции z = f(x; y) в замкнутой ограниченной области D:

$$z = x^3 + y^3 - 9xy - 25$$
,
 $D: 0 \le y \le 5$; $0 \le x \le 5$.

Вариант 20

Задание 1. Найти область определения функции двух переменных и изобразить ее в координатной плоскости 0xy:

$$z = 5xy + 10 + \ln(-x + y).$$

Задание 2. Найти частные производные первого порядка следующих функций:

- 1) $z = 8x^3y^5 + 3\sin(x^4y + 2y)$;
- $2) u = xyz + e^{xyz}.$

Задание 3. Найти производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ сложной функции:

$$z = \arctan(xy)$$
, $x = \sqrt{u^2 + v^2}$, $y = u - v$.

Задание 4. Показать, что функция

$$z = \ln(e^x + e^y)$$

удовлетворяет уравнению

$$\frac{\partial^2 z}{\partial x^2} \cdot \frac{\partial^2 z}{\partial y^2} - \left(\frac{\partial^2 z}{\partial x \partial y}\right)^2 = 0.$$

Задание 5. Дана функция z = f(x; y), вектор \vec{l} и точка A:

$$z = 4x^2 - xy - y^2$$
; $\vec{l} = -3\vec{i} + 5\vec{j}$; $A(-3; -2)$.

Найти производную по направлению \vec{l} , градиент функции и его модуль в точке A.

Задание 6. Составить уравнение касательной плоскости и нормали к поверхности

$$x^2 + y^2 - z^2 = 0$$

в точке A(3; 4; 5).

Задание 7. Исследовать на экстремум функцию двух независимых переменных:

$$z = x^2 + xy + y^2 - 4x + 5y.$$

Задание 8. Найти наибольшее и наименьшее значение функции z = f(x; y) в замкнутой ограниченной области D:

$$z = xy + x + y$$
,
 $D: 2 \le y \le 3; \ 1 \le x \le 2$.

Вариант 21

Задание 1. Найти область определения функции двух переменных и изобразить ее в координатной плоскости 0xy:

$$z = \sqrt{1 + y - x^2} - \sqrt{1 - y - x^2}.$$

Задание 2. Найти частные производные первого порядка следующих функций:

- 1) $z = -2x^3y^9 + \cos(3xy + 4y^7)$;
- 2) $u = x^2z \ln(x + y z)$.

Задание 3. Найти производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ сложной функции:

$$z = \ln(x^2 + y^2)$$
, $x = uv$, $y = \frac{u}{v}$.

Задание 4. Показать, что функция

$$z = \cos x \cdot \sin y$$

удовлетворяет уравнению

$$z\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial z}{\partial x} \cdot \frac{\partial z}{\partial y}.$$

Задание 5. Дана функция z = f(x; y), вектор \vec{l} и точка A:

$$z = 4x^2 - 2xy + 3y^2$$
; $\vec{l} = 2\vec{i} - 6\vec{j}$; $A(-2; -5)$.

Найти производную по направлению \vec{l} , градиент функции и его модуль в точке A.

Задание 6. Составить уравнение касательной плоскости и нормали к поверхности

$$x^2 - y^2 - z^2 = 1$$

в точке A(3; 2; 2).

Задание 7. Исследовать на экстремум функцию двух независимых переменных: $z = 2x^3y^2 - x^4y^2 - x^3y^3$.

Задание 8. Найти наибольшее и наименьшее значение функции z = f(x; y) в замкнутой ограниченной области D:

$$z = x + 2y + 1$$
,
 $D: y \ge 0; x \ge 0; x + y \le 1$.

Вариант 22

Задание 1. Найти область определения функции двух переменных и изобразить ее в координатной плоскости Oxy:

$$z = xy^2 \ln(x^2 + y).$$

Задание 2. Найти частные производные первого порядка следующих функций:

- 1) $z = 2x^8y^4 + 9\sin(3xy + 5x^6)$;
- 2) $u = xyz^4 + \arccos(xyz)$.

Задание 3. Найти производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ сложной функции:

$$z = 2^x \operatorname{arctg} y$$
, $x = \frac{u}{v}$, $y = uv$.

Задание 4. Показать, что функция

$$z = ye^{x^2 - y^2}$$

удовлетворяет уравнению

$$\frac{1}{x} \cdot \frac{\partial z}{\partial x} + \frac{1}{y} \cdot \frac{\partial z}{\partial y} = \frac{z}{y^2}.$$

Задание 5. Дана функция z = f(x; y), вектор \vec{l} и точка A:

$$z = 2x^2 + 3xy - 7y^2$$
; $\vec{l} = 3\vec{i} - 6\vec{j}$; $A(2; -1)$.

Найти производную по направлению \vec{l} , градиент функции и его модуль в точке A.

Задание 6. Составить уравнение касательной плоскости и нормали к поверхности

$$z = 2x^2 + 3y^2 - 6x + 2y + 1$$

в точке A(1; -2; 5).

Задание 7. Исследовать на экстремум функцию двух независимых переменных: $z = xy - \ln(x + y)$.

Задание 8. Найти наибольшее и наименьшее значение функции z = f(x; y) в замкнутой ограниченной области D:

$$z = x^2 + 3y^2 - y + x,$$

D: $y \ge -1$; $x \ge 1$; $x + y \le 1$.

Вариант 23

Задание 1. Найти область определения функции двух переменных и изобразить ее в координатной плоскости Оху:

$$z = 4 + \sqrt[6]{1 - x^2 + y}$$
.

Задание 2. Найти частные производные первого порядка следующих функций:

1)
$$z = 5x^7y^4 - 9\cos(xy + 10x^4)$$
;

2)
$$u = arctg(x^2 + y + 4z)$$
.

 $z = \frac{\partial z}{\partial u}$ и = arctg(x + y + 4z). Задание 3. Найти производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ сложной функции: $z = \frac{x^2}{y}, x = u - 2v, y = 2u + v.$

$$z = \frac{x^2}{y}, x = u - 2v, y = 2u + v$$

Задание 4. Показать, что функция

$$z = \sin x + y \cos x$$

удовлетворяет уравнению

$$\frac{\partial z}{\partial x} = y \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial z}{\partial y}.$$

Задание 5. Дана функция z = f(x; y), вектор \vec{l} и точка A:

$$z = 3x^2 - 4xy - 5y^2$$
; $\vec{l} = 2\vec{i} - 4\vec{j}$; $A(-1; 1)$.

Найти производную по направлению \vec{l} , градиент функции и его модуль в точке А.

Задание 6. Составить уравнение касательной плоскости и нормали к поверхности

$$z = x^2 - 3y^2 + 4x + 2y - 1$$

в точке A(-2; 0; -5).

Задание 7. Исследовать на экстремум функцию двух независимых переменных: $z = -x^2 + xy - y^2 + 6x - 9y - 35.$

Задание 8. Найти наибольшее и наименьшее значение функции z = f(x; y) в замкнутой ограниченной области *D*:

$$z = x^2 + xy - 2$$
,
 $D: y \le 0$; $y \ge x^2 - 4$.

Вариант 24

Задание 1. Найти область определения функции двух переменных и изобразить ее в координатной плоскости Оху:

$$z = \sqrt{y - \sqrt{4 - x}}.$$

Задание 2. Найти частные производные первого порядка следующих функций:

- 1) $z = -3x^8y^4 + 12\sin(xy + 4y^6)$;
- 2) $u = \operatorname{arcctg}(xy^3 + 4z)$.

Задание 3. Найти производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ сложной функции:

$$z = x^2 \ln y$$
, $x = \frac{v}{u}$, $y = u^2 + v^2$.

Задание 4. Показать, что функция

$$z = \frac{1}{y}(\cos(2x + y) + \sin(2x - y))$$

удовлетворяет уравнению

$$\frac{\partial^2 z}{\partial x^2} = \frac{4}{y^2} \cdot \frac{\partial}{\partial y} \left(y^2 \frac{\partial z}{\partial y} \right).$$

Задание 5. Дана функция z = f(x; y), вектор \vec{l} и точка A:

$$z = x^2 - 4xy + 6y^2$$
; $\vec{l} = -2\vec{i} - 4\vec{j}$; $A(3; -1)$.

Найти производную по направлению \vec{l} , градиент функции и его модуль в точке A.

Задание 6. Составить уравнение касательной плоскости и нормали к поверхности

$$x^2v^2 + 2v + z^3 = 10$$

в точке *A*(2; -1; 2).

Задание 7. Исследовать на экстремум функцию двух независимых переменных:

$$z = 2x^3 - 36xy + 2y^3 + 10.$$

Задание 8. Найти наибольшее и наименьшее значение функции z = f(x; y) в замкнутой ограниченной области D:

$$z = x^{2}y + xy + xy^{2},$$

$$D: y = \frac{1}{x}; \ x = 1; \ x = 2; \ y = 0.$$

Вариант 25

Задание 1. Найти область определения функции двух переменных и изобразить ее в координатной плоскости 0xy:

$$z = xy + \ln(25 - x^2 - y^2).$$

Задание 2. Найти частные производные первого порядка следующих функций:

- 1) $z = 8x^3y^5 + 7\cos(2xy 5y^9)$;
- 2) $u = \ln(x^2 + xy^3 + xz 2z)$.

Задание 3. Найти производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ сложной функции:

$$z = x^2y - xy^2, x = u \sin v, y = v \cos u.$$

Задание 4. Показать, что функция

$$z = \frac{1}{x}(\cos(x - y) + \sin(x + y))$$

удовлетворяет уравнению

$$x^2 \frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial x} \left(x^2 \frac{\partial z}{\partial x} \right).$$

Задание 5. Дана функция z = f(x; y), вектор \vec{l} и точка A:

$$z = -4x^2 - 2xy + y^2$$
; $\vec{l} = 3\vec{i} + 2\vec{j}$; $A(-5; -2)$.

Найти производную по направлению \vec{l} , градиент функции и его модуль в точке A.

Задание 6. Составить уравнение касательной плоскости и нормали к поверхности

$$z = x^2 + y^2$$

в точке A(1; 1; 2).

Задание 7. Исследовать на экстремум функцию двух независимых переменных:

$$z = -x^2 + xy - y^2 - 9x + 3y - 20$$
.

Задание 8. Найти наибольшее и наименьшее значение функции z = f(x; y) в замкнутой ограниченной области D:

$$z = 4x^2y - x^3y - x^2y^2,$$

D: $y \ge 0$; $x \ge 0$; $x + y \le 6$.

Вариант 26

Задание 1. Найти область определения функции двух переменных и изобразить ее в координатной плоскости 0xy:

$$z = \frac{4x}{\sqrt{16 - x^2 - y^2}}.$$

Задание 2. Найти частные производные первого порядка следующих функций:

1)
$$z = -7x^2y^5 - \sin(8xy + 9x^4)$$
;

2)
$$u = xyz^3 + \sqrt{x + 2y}$$
.

Задание 3. Найти производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ сложной функции:

$$z = \arcsin\frac{x}{y}, x = \sqrt{u} + v, y = uv.$$

Задание 4. Показать, что функция

$$z = y\sin(x^2 - y^2)$$

удовлетворяет уравнению

$$\frac{1}{x} \cdot \frac{\partial z}{\partial x} + \frac{1}{y} \cdot \frac{\partial z}{\partial y} = \frac{z}{y^2}.$$

 $\it 3adahue 5.$ Дана функция z = f(x; y), вектор \vec{l} и точка $\it A$:

$$z = 2x^2 - 7xy + 8y^2$$
; $\vec{l} = -2\vec{i} - 5\vec{j}$; $A(-2; -4)$.

Найти производную по направлению \vec{l} , градиент функции и его модуль в точке A.

Задание 6. Составить уравнение касательной плоскости и нормали к поверхности

$$x^2 - y^2 - z^2 = 1$$

в точке A(3; 2; 2).

Задание 7. Исследовать на экстремум функцию двух независимых переменных: $z = 12x^3y^2 - x^4y^2 - x^3y^3$.

Задание 8. Найти наибольшее и наименьшее значение функции z = f(x; y) в замкнутой ограниченной области D:

$$z = x^2 + 2xy - 4x + 8y$$
,
 $D: 0 \le y \le 2$; $0 \le x \le 1$.

Вариант 27

Задание 1. Найти область определения функции двух переменных и изобразить ее в координатной плоскости 0xy:

$$z = \sqrt{y^2 - 16} + \sqrt{16 - x^2}.$$

Задание 2. Найти частные производные первого порядка следующих функций:

1) $z = 2x^8y^{10} + 7\cos(3xy + 5x^6)$;

2)
$$u = xyz + \frac{1}{(x^2 + y^2 + z^2)^2}$$
.

Задание 3. Найти производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ сложной функции:

$$z = 1 + \sin(x^2y)$$
, $x = \sqrt{u} + \sqrt{v}$, $y = u^2v^3$.

Задание 4. Показать, что функция

$$z = x \ln(x + y) + y \cos(x + y)$$

удовлетворяет уравнению

$$\frac{\partial^2 z}{\partial x^2} - 2\frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0.$$

Задание 5. Дана функция z = f(x; y), вектор \vec{l} и точка A:

$$z = x^2 - 6xy + 7y^2$$
; $\vec{l} = -4\vec{i} + 5\vec{j}$; $A(-2; -1)$.

Найти производную по направлению \vec{l} , градиент функции и его модуль в точке A.

Задание 6. Составить уравнение касательной плоскости и нормали к поверхности

$$4x^2 + y^2 = 9z$$

в точке A(0; 3; 1).

Задание 7. Исследовать на экстремум функцию двух независимых переменных:

$$z = x^2 + xy + y^2 - 2x - 3y + \frac{17}{3}.$$

Задание 8. Найти наибольшее и наименьшее значение функции z = f(x; y) в замкнутой ограниченной области D:

$$z = 4xy - x^2y - xy^2$$
,
 $D: y \ge 0; x \ge 1; x + y \le 6$.

Вариант 28

Задание 1. Найти область определения функции двух переменных и изобразить ее в координатной плоскости 0xy:

$$z = \arcsin(4x - 2y + 3).$$

Задание 2. Найти частные производные первого порядка следующих функций:

1) $z = -9x^3y^4 - \sin(4xy - 3x^8)$;

 $2) u = \arcsin(x + 2y - 5z).$

Задание 3. Найти производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ сложной функции:

$$z = x^y, x = \sin u + 2v, y = u + \cos v.$$

Задание 4. Показать, что функция

$$z = \sin x + \cos y - (x - y)\sin y$$

удовлетворяет уравнению

$$(x - y)\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial z}{\partial y}.$$

Задание 5. Дана функция z = f(x; y), вектор \vec{l} и точка A:

$$z = -5x^2 + 2xy - 8y^2$$
; $\vec{l} = -2\vec{i} + 5\vec{j}$; $A(-3; -1)$.

Найти производную по направлению \vec{l} , градиент функции и его модуль в точке A.

Задание 6. Составить уравнение касательной плоскости и нормали к поверхности

$$9x^2 + 12y^2 + 4z^2 = 36$$

в точке A(0; 0; 3).

Задание 7. Исследовать на экстремум функцию двух независимых переменных: $z = 4x^2y + 24xy + 32y + y^2 - 6$.

Задание 8. Найти наибольшее и наименьшее значение функции z = f(x; y) в замкнутой ограниченной области D:

$$z = x^2y - xy^2,$$

$$D: y \ge -5; \ y \le x; \ y \le -x.$$

Вариант 29

Задание 1. Найти область определения функции двух переменных и изобразить ее в координатной плоскости 0xy:

$$z = 3xy + \log_3(y - x^2 + 2).$$

Задание 2. Найти частные производные первого порядка следующих функций:

1)
$$z = -6x^9y^4 + 5\cos(2xy^3 + x^8)$$
;

2)
$$u = \frac{4}{(xyz)^3} + xy - z$$
.

Задание 3. Найти производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ сложной функции:

$$z = \ln(x^2 + y^2)$$
, $x = uv$, $y = \frac{u}{v}$.

Задание 4. Показать, что функция

$$z = x^3 + 5xy^2$$

удовлетворяет уравнению

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0.$$

 $\it 3adahue 5.$ Дана функция z=f(x;y), вектор $\vec l$ и точка $\it A$:

$$z = -4x^2 + 5xy - 2y^2$$
; $\vec{l} = -5\vec{i} - 6\vec{j}$; $A(2; -7)$.

Найти производную по направлению \vec{l} , градиент функции и его модуль в точке A.

Задание 6. Составить уравнение касательной плоскости и нормали к поверхности

$$x^2 + y^2 + z^2 = 4$$

в точке $A(1; 1; \sqrt{2})$.

Задание 7. Исследовать на экстремум функцию двух независимых переменных:

$$z = \frac{1}{3}x^3 - xy^2 + \frac{1}{2}x^2 - 3xy + 3y - 2x + y^2.$$

Задание 8. Найти наибольшее и наименьшее значение функции z = f(x; y) в замкнутой ограниченной области D:

$$z = x^2 - xy + 2y^2 + 3x + 2y + 1,$$

$$D: y \le 0; \ x \le 0; \ x + y \ge -5.$$

Вариант 30

Задание 1. Найти область определения функции двух переменных и изобразить ее в координатной плоскости 0xy:

$$z = e^{xy} + \sqrt{2 - y - x^2}.$$

Задание 2. Найти частные производные первого порядка следующих функций:

- 1) $z = -4x^5y^9 8\sin(3xy + 9y^{10})$;
- 2) $u = \arctan(x^2 + yz + 1)$.

Задание 3. Найти производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ сложной функции:

$$z = x \cos(xy)$$
, $x = u \ln(uv)$, $y = u \arcsin \frac{1}{v}$.

Задание 4. Показать, что функция

$$z = \ln \frac{1}{\sqrt{x^2 + y^2}}$$

удовлетворяет уравнению

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0.$$

Задание 5. Дана функция z = f(x; y), вектор \vec{l} и точка A:

$$z = 4x^2 - 6xy - 3y^2$$
; $\vec{l} = 6\vec{i} + 2\vec{j}$; $A(-7, 9)$.

Найти производную по направлению \vec{l} , градиент функции и его модуль в точке A.

Задание 6. Составить уравнение касательной плоскости и нормали к поверхности

$$3x^2 + y^2 = z^2$$

в точке A(1; 1; 2).

Задание 7. Исследовать на экстремум функцию двух независимых переменных: $z = 6x^2 - 7xy + 2y^2 - 3y + 6x$.

Задание 8. Найти наибольшее и наименьшее значение функции z = f(x; y) в замкнутой ограниченной области D:

$$z = x^2 + y^2$$
,
 $D: 3|x| + 4|y| \le 0$.

Раздел 2. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Вариант 1

Задание 1. Изменить порядок интегрирования:

$$\int_{0}^{1} dy \int_{0}^{y} f(x;y) dx + \int_{1}^{\sqrt{2}} dy \int_{0}^{\sqrt{2-y^{2}}} f(x;y) dx.$$

Задание 2. Вычислить двойной интеграл:

$$\iint_{D} (8xy + 9x^{2}y^{2}) dxdy;$$

$$D: x = 1; y = \sqrt[3]{x}; y = -x^{3}.$$

Задание 3. Вычислить двойной интеграл:

$$\iint_{D} y \cos 2xy \, dx dy;$$

$$D: y = \frac{\pi}{2}; y = \pi; x = \frac{1}{2}; x = 1.$$

Задание 4. Вычислить тройной интеграл:

$$\iiint\limits_V y^2 e^{-xy} \, dx dy dz;$$

$$V: x = 0; y = -2; y = 4x; z = 0; z = 1.$$

Задание 5. Найти площадь фигуры, ограниченной линиями:

1)
$$y = 32 - x^2$$
; $y = -4x$;

2)
$$x^2 - 2x + y^2 = 0$$
; $x^2 - 10x + y^2 = 0$; $y = 0$; $y = \sqrt{3}x$.

Задание 6. Найти объем тела, заданного ограничивающими его поверхностями:

$$y = 17\sqrt{2x}$$
; $y = 2\sqrt{2x}$; $z = 0$; $x + z = \frac{1}{2}$.

Вариант 2

Задание 1. Изменить порядок интегрирования:

$$\int_{0}^{1} dx \int_{1-x^{2}}^{1} f(x;y)dy + \int_{1}^{e} dx \int_{\ln x}^{1} f(x;y)dy.$$

Задание 2. Вычислить двойной интеграл:

$$\iint_{D} (27x^{2}y^{2} + 48x^{3}y^{3}) dxdy;$$

$$D: x = 1; y = -\sqrt[3]{x}; y = x^{2}.$$

Задание 3. Вычислить двойной интеграл:

$$\iint\limits_{D} y^2 e^{-xy/4} dxdy;$$

$$D: x = 0; y = 2; y = x.$$

Задание 4. Вычислить тройной интеграл:

$$\iiint\limits_{V} x^2 \sin(4\pi xy) \ dxdydz;$$

$$V: x = 1; y = \frac{x}{2}; y = 0; z = 0; z = 8\pi.$$

Задание 5. Найти площадь фигуры, ограниченной линиями:

1)
$$x = \sqrt{72 - y^2}$$
; $6x = y^2$; $y = 0$ $(y \ge 0)$;

2)
$$x^2 - 2x + y^2 = 0$$
; $x^2 - 6x + y^2 = 0$; $y = \frac{x}{\sqrt{3}}$; $y = \sqrt{3}x$.

Задание 6. Найти объем тела, заданного ограничивающими его поверхностями:

$$y = \sqrt{x}$$
; $z = 0$; $z = 12y$; $x + y = 2$.

Вариант 3

Задание 1. Изменить порядок интегрирования:
$$\int\limits_{0}^{\sqrt{3}} dx \int\limits_{0}^{2-\sqrt{4-x^2}} f(x;y) dy + \int\limits_{\sqrt{3}}^{2} dx \int\limits_{0}^{\sqrt{4-x^2}} f(x;y) dy.$$

Задание 2. Вычислить двойной интеграл:

$$\iint_{D} (9x^{2}y^{2} + 25x^{4}y^{4}) dxdy;$$

$$D: x = 1; y = \sqrt{x}; y = -x^{2}.$$

Задание 3. Вычислить двойной интеграл:

$$\iint_{D} y \sin xy \, dx dy;$$

$$D: y = \frac{\pi}{2}; y = \pi; x = 1; x = 2.$$

Задание 4. Вычислить тройной интеграл:

$$\iiint_{V} y^{2}e^{xy/2} dxdydz;$$

$$V: x = 0; y = 2; y = 2x; z = 0; z = -1.$$

Задание 5. Найти площадь фигуры, ограниченной линиями:

1)
$$y = \sin x$$
; $y = \cos x$; $x = 0$ ($x \ge 0$);

2)
$$y^2 - 2y + x^2 = 0$$
; $y^2 - 4y + x^2 = 0$; $y = \frac{x}{\sqrt{3}}$; $y = \sqrt{3}x$.

Задание 6. Найти объем тела, заданного ограничивающими его поверхностями:

$$x = 19\sqrt{2y}$$
; $x = 4\sqrt{2y}$; $z = 0$; $x + y = 2$.

Вариант 4

Задание 1. Изменить порядок интегрирования:

$$\int_{0}^{1} dy \int_{0}^{\sqrt{y}} f(x;y) dx + \int_{1}^{\sqrt{2}} dy \int_{0}^{\sqrt{2-y^{2}}} f(x;y) dx.$$

Задание 2. Вычислить двойной интеграл:

$$\iint\limits_{D} (4xy + 3x^2y^2) \, dxdy;$$

$$D: x = 1; y = -\sqrt{x}; y = x^2.$$

Задание 3. Вычислить двойной интеграл:

$$\iint_{D} y \cos xy \, dx dy;$$

$$D: y = \pi; y = 3\pi; x = \frac{1}{2}; x = 1.$$

Задание 4. Вычислить тройной интеграл:

$$\iiint_{V} 2x^{2}z \operatorname{sh}(xyz) \ dxdydz;$$

$$V: x = 0; \ x = 1; y = 0; \ y = -1; z = 0; z = 1.$$

Задание 5. Найти площадь фигуры, ограниченной линиями:

1)
$$y = \frac{3}{x}$$
; $y = 8e^x$; $y = 3$; $y = 8$;

2)
$$x^2 - 4x + y^2 = 0$$
; $x^2 - 8x + y^2 = 0$; $y = 0$; $y = x$.

Задание 6. Найти объем тела, заданного ограничивающими его поверхностями:

$$y = \sqrt{4x}$$
; $z = 0$; $z = 3y$; $x + y = 8$.

Вариант 5

Задание 1. Изменить порядок интегрирования:

$$\int_{-2}^{-1} dy \int_{-2-y}^{0} f(x;y) dx + \int_{-1}^{\sqrt{2}} dy \int_{\sqrt[3]{y}}^{0} f(x;y) dx.$$

Задание 2. Вычислить двойной интеграл:

$$\iint_{D} (18x^{2}y^{2} + 32x^{3}y^{3}) dxdy;$$

$$D: x = 1; y = \sqrt[3]{x}; y = -x^{2}.$$

Задание 3. Вычислить двойной интеграл:

$$\iint_{D} 4y e^{2xy} dxdy;$$

$$D: y = \ln 3; y = \ln 4; x = \frac{1}{2}; x = 1.$$

Задание 4. Вычислить тройной интеграл:

$$\iiint\limits_V y^2 \operatorname{ch}(3xy) \ dxdydz;$$

$$V: x = 0; y = 2; y = 6x; z = 0; z = -3.$$

Задание 5. Найти площадь фигуры, ограниченной линиями:

1)
$$x = 8 - y^2$$
; $x = -2y$;

2)
$$y^2 - 4y + x^2 = 0$$
; $y^2 - 8y + x^2 = 0$; $x = 0$; $y = \sqrt{3}x$.

Задание 6. Найти объем тела, заданного ограничивающими его поверхностями:

$$x = 0; x = \sqrt{5y}; z = 0; z = \frac{6y}{11}; x^2 + y^2 = 50.$$

Вариант 6

Задание 1. Изменить порядок интегрирования:

$$\int_{0}^{1} dx \int_{-\sqrt{x}}^{0} f(x; y) dy + \int_{1}^{2} dx \int_{-\sqrt{2-x}}^{0} f(x; y) dy.$$

Задание 2. Вычислить двойной интеграл:

$$\iint_{D} (24xy + 18x^{2}y^{2}) dxdy;$$

$$D: x = 1; y = -\sqrt[3]{x}; y = x^{3}.$$

Задание 3. Вычислить двойной интеграл:

$$\iint_{D} 4y^{2} \sin 2xy \, dxdy;$$

$$D: y = 2x; y = \sqrt{2\pi}; x = 0.$$

Задание 4. Вычислить тройной интеграл:

$$\iiint\limits_V 8y^2ze^{-xyz}\,dxdydz;$$

$$V: x = 0; x = 2; y = 0; y = -1; z = 0; z = 2.$$

Задание 5. Найти площадь фигуры, ограниченной линиями:

1)
$$y = \sqrt{6 - x^2}$$
; $y = \sqrt{6} - \sqrt{6 - x^2}$;

2)
$$x^2 - 4x + y^2 = 0$$
; $x^2 - 8x + y^2 = 0$; $y = \frac{x}{\sqrt{3}}$; $y = \sqrt{3}x$.

Задание 6. Найти объем тела, заданного ограничивающими его поверхностями:

$$y = 16\sqrt{2x}$$
; $y = \sqrt{2x}$; $z = 0$; $x + z = 2$.

Вариант 7

Задание 1. Изменить порядок интегрирования:

$$\int_{-\sqrt{2}}^{-1} dy \int_{-\sqrt{2-y^2}}^{0} f(x;y)dx + \int_{-1}^{0} dy \int_{y}^{0} f(x;y)dx.$$

Задание 2. Вычислить двойной интеграл:

$$\iint_{D} (27x^{2}y^{2} + 48x^{3}y^{3}) dxdy;$$

$$D: x = 1; y = \sqrt{x}; y = -x^{3}.$$

Задание 3. Вычислить двойной интеграл:

$$\iint_{D} 6y e^{xy/3} dxdy;$$

$$D: y = \ln 2; y = \ln 3; x = 3; x = 6.$$

Задание 4. Вычислить тройной интеграл:

$$\iiint\limits_V y^2 \cos(\pi xy) \ dxdydz;$$

$$V: x = 0; y = 1; y = 2x; z = 0; z = \pi^2.$$

Задание 5. Найти площадь фигуры, ограниченной линиями:

1)
$$y = 3\sqrt{x}$$
; $y = \frac{3}{x}$; $x = 9$;

2)
$$y^2 - 2y + x^2 = 0$$
; $y^2 - 10y + x^2 = 0$; $y = \frac{x}{\sqrt{3}}$; $y = \sqrt{3}x$.

Задание 6. Найти объем тела, заданного ограничивающими его поверхностями:

$$x = 20\sqrt{2y}$$
; $x = 5\sqrt{2y}$; $z = 0$; $y + z = \frac{1}{2}$.

Вариант 8

Задание 1. Изменить порядок интегрирования:

$$\int_{0}^{1} dy \int_{-\sqrt{y}}^{0} f(x; y) dx + \int_{1}^{e} dy \int_{-1}^{-\ln y} f(x; y) dx.$$

Задание 2. Вычислить двойной интеграл:

$$\iint_{D} \left(3x^{2}y^{2} + \frac{50}{3}x^{4}y^{4} \right) dxdy;$$

$$D: x = 1; y = \sqrt[3]{x}; y = -x^{3}.$$

Задание 3. Вычислить двойной интеграл:

$$\iint\limits_{D} y \cos xy \, dx dy;$$

$$D: y = \frac{\pi}{2}; y = \pi; x = 1; x = 2.$$

Задание 4. Вычислить тройной интеграл:

$$\iiint_{V} 8y^{2}ze^{2xyz} dxdydz;$$

$$V: x = -1; x = 0; y = 0; y = 2; z = 0; z = 1.$$

Задание 5. Найти площадь фигуры, ограниченной линиями:

1)
$$y = 11 - x^2$$
; $y = -10x$;

2)
$$x^2 - 6x + y^2 = 0$$
; $x^2 - 10x + y^2 = 0$; $y = \frac{x}{\sqrt{3}}$; $y = \sqrt{3}x$.

Задание 6. Найти объем тела, заданного ограничивающими его поверхностями:

$$y = \sqrt{2x}$$
; $z = 0$; $z = 3y$; $x + y = 4$.

30

Вариант 9

Задание 1. Изменить порядок интегрирования:

$$\int_{-\sqrt{2}}^{-1} dx \int_{0}^{\sqrt{2-x^2}} f(x;y)dy + \int_{-1}^{0} dx \int_{0}^{x^2} f(x;y)dy.$$

Задание 2. Вычислить двойной интеграл:

$$\iint_{D} (6xy + 24x^{3}y^{3}) dxdy;$$

$$D: x = 1; y = \sqrt{x}; y = -x^{2}.$$

Задание 3. Вычислить двойной интеграл:

$$\iint_{D} y^{2} e^{-xy/8} dxdy;$$

$$D: y = \frac{x}{2}; y = 2; x = 0.$$

Задание 4. Вычислить тройной интеграл:

$$\iiint\limits_V y^2 z \cos \frac{xyz}{3} \, dx dy dz;$$

 $V: x = 0; x = 3; y = 0; y = 1; z = 0; z = 2\pi.$

Задание 5. Найти площадь фигуры, ограниченной линиями:

1)
$$x^2 + y^2 = 12$$
; $-\sqrt{6}y = x^2$ ($y \le 0$);

2)
$$y^2 - 6y + x^2 = 0$$
; $y^2 - 10y + x^2 = 0$; $y = x$; $x = 0$.

Задание 6. Найти объем тела, заданного ограничивающими его поверхностями:

$$y = \sqrt{15x}$$
; $y = \sqrt{15}x$; $z = 0$; $z = \sqrt{15}(1 + \sqrt{x})$.

Вариант 10

Задание 1. Изменить порядок интегрирования:

$$\int_{0}^{1} dy \int_{0}^{\sqrt{y}} f(x;y) dx + \int_{1}^{2} dy \int_{0}^{\sqrt{2-y}} f(x;y) dx.$$

Задание 2. Вычислить двойной интеграл:

$$\iint_{D} (12x^{2}y^{2} + 16x^{3}y^{3}) dxdy;$$

$$D: x = 1; y = -\sqrt{x}; y = x^{2}.$$

Задание 3. Вычислить двойной интеграл:

$$\iint_{D} y^{2} \cos \frac{xy}{2} dxdy;$$

$$D: y = 2x; y = \sqrt{2\pi}; x = 0.$$

Задание 4. Вычислить тройной интеграл:

$$\iiint\limits_V y^2 z \operatorname{ch}(xyz) \ dxdydz;$$

$$V: x = 0; x = 1; y = 0; y = 1; z = 0; z = 1.$$

Задание 5. Найти площадь фигуры, ограниченной линиями:

1)
$$y = \frac{3}{2}\sqrt{x}$$
; $y = \frac{3}{2x}$; $x = 4$;

2)
$$y^2 - 4y + x^2 = 0$$
; $y^2 - 6y + x^2 = 0$; $x = 0$; $y = \sqrt{3}x$.

Задание 6. Найти объем тела, заданного ограничивающими его поверхностями:

$$x = 0$$
; $x = \sqrt{y}$; $z = 0$; $z = 30y$; $x^2 + y^2 = 2$.

Вариант 11

Задание 1. Изменить порядок интегрирования:

$$\int_{-2}^{-1} dy \int_{-\sqrt{2+y}}^{0} f(x;y)dx + \int_{-1}^{0} dy \int_{-\sqrt{-y}}^{0} f(x;y)dx.$$

Задание 2. Вычислить двойной интеграл:

$$\iint_{D} (44xy + 16x^{3}y^{3}) dxdy;$$

$$D: x = 1; y = -\sqrt[3]{x}; y = x^{2}.$$

Задание 3. Вычислить двойной интеграл:

$$\iint_{D} 12y \sin 2xy \, dx dy;$$

$$D: y = \frac{\pi}{4}; y = \frac{\pi}{2}; x = 2; x = 3.$$

Задание 4. Вычислить тройной интеграл:

$$\iiint\limits_{V} x^2 \sin(\pi xy) \ dxdydz;$$

$$V: x = 1; y = 0; y = 2x; z = 0; z = 4\pi.$$

Задание 5. Найти площадь фигуры, ограниченной линиями:

1)
$$y = 6 - \sqrt{36 - x^2}$$
; $y = \sqrt{36 - x^2}$; $x = 0$ ($x \ge 0$);

2)
$$x^2 - 2x + y^2 = 0$$
; $x^2 - 8x + y^2 = 0$; $y = \frac{x}{\sqrt{3}}$; $y = \sqrt{3}x$.

Задание 6. Найти объем тела, заданного ограничивающими его поверхностями:

$$y = 5\sqrt{x}$$
; $y = \frac{5x}{3}$; $z = 0$; $z = 5 + \frac{5\sqrt{x}}{3}$.

Вариант 12

Задание 1. Изменить порядок интегрирования:

$$\int_{0}^{1} dx \int_{0}^{\sqrt{x}} f(x; y) dy + \int_{1}^{2} dy \int_{0}^{\sqrt{2-x}} f(x; y) dy.$$

Задание 2. Вычислить двойной интеграл:

$$\iint_{D} \left(6x^{2}y^{2} + \frac{25}{3}x^{4}y^{4} \right) dxdy;$$

$$D: x = 1; y = -\sqrt{x}; y = x^{2}.$$

Задание 3. Вычислить двойной интеграл:

$$\iint_{D} 8ye^{4xy} dxdy;$$

$$D: y = \ln 3; y = \ln 4; x = \frac{1}{4}; x = \frac{1}{2}.$$

Задание 4. Вычислить тройной интеграл:

$$\iiint_{V} 2y^{2}ze^{xyz} dxdydz;$$

$$V: x = 0; x = 1; y = 0; y = 1; z = 0; z = 1.$$

Задание 5. Найти площадь фигуры, ограниченной линиями:

1)
$$y = \frac{3}{x}$$
; $y = 4e^x$; $y = 3$; $y = 4$;
2) $y^2 - 8y + x^2 = 0$; $y^2 - 10y + x^2 = 0$; $y = \frac{x}{\sqrt{3}}$; $y = \sqrt{3}x$.

Задание 6. Найти объем тела, заданного ограничивающими его поверхностями:

$$x = 17\sqrt{2y}$$
; $x = 2\sqrt{2y}$; $z = 0$; $y + z = \frac{1}{2}$.

Вариант 13

Задание 1. Изменить порядок интегрирования:

$$\int_{0}^{\sqrt{3}} dx \int_{\sqrt{4-x^2}-2}^{0} f(x;y)dy + \int_{\sqrt{3}}^{2} dx \int_{-\sqrt{4-x^2}}^{0} f(x;y)dy.$$

Задание 2. Вычислить двойной интеграл:

$$\iint_{D} (12xy + 27x^{2}y^{2}) dxdy;$$

$$D: x = 1; y = -\sqrt[3]{x}; y = x^{2}.$$

Задание 3. Вычислить двойной интеграл:

$$\iint_{D} y \sin xy \, dx dy;$$

$$D: y = \pi; y = 2\pi; x = \frac{1}{2}; x = 1.$$

Задание 4. Вычислить тройной интеграл:

$$\iiint\limits_{V} x^2 \operatorname{sh}(xy) \ dxdydz;$$

$$V: x = 2; y = 0; y = \frac{x}{2}; z = 0; z = 1.$$

Задание 5. Найти площадь фигуры, ограниченной линиями:

1)
$$y = \frac{3}{2}\sqrt{x}$$
; $y = \frac{3}{2x}$; $x = 9$;
2) $y^2 - 6y + x^2 = 0$; $y^2 - 8y + x^2 = 0$; $y = x$; $x = 0$.

Задание 6. Найти объем тела, заданного ограничивающими его поверхностями: $y = 6\sqrt{3x}; \ y = \sqrt{3x}; \ z = 0; \ x + z = 3.$

Вариант 14

Задание 1. Изменить порядок интегрирования:

$$\int_{0}^{1} dy \int_{0}^{\sqrt{y}} f(x;y) dx + \int_{1}^{e} dy \int_{\ln y}^{1} f(x;y) dx.$$

Задание 2. Вычислить двойной интеграл:

$$\iint_{D} (54x^{2}y^{2} + 150x^{4}y^{4}) dxdy;$$
$$D: x = 1; y = -\sqrt[3]{x}; y = x^{2}.$$

Задание 3. Вычислить двойной интеграл:

$$\iint_{D} y^{2} \sin \frac{xy}{2} dxdy;$$

$$D: y = \frac{x}{2}; y = \sqrt{\pi}; x = 0.$$

Задание 4. Вычислить тройной интеграл:

$$\iiint_{V} 2y^{2}z \operatorname{ch}(2xyz) \ dxdydz;$$

$$V: x = 0; x = \frac{1}{2}; \ y = 0; y = 2; z = 0; z = -1.$$

Задание 5. Найти площадь фигуры, ограниченной линиями:

1) $y = \sin x$; $y = \cos x$; x = 0 ($x \le 0$);

2)
$$y^2 - 4y + x^2 = 0$$
; $y^2 - 8y + x^2 = 0$; $x = 0$; $y = \frac{x}{\sqrt{3}}$

Задание 6. Найти объем тела, заданного ограничивающими его поверхностями:

$$y = \sqrt{3x}$$
; $z = 4y$; $z = 0$; $x + y = 6$.

Вариант 15

Задание 1. Изменить порядок интегрирования

$$\int_{0}^{1} dx \int_{0}^{x^{2}} f(x; y) dy + \int_{1}^{\sqrt{2}} dx \int_{0}^{\sqrt{2-x^{2}}} f(x; y) dy.$$

Задание 2. Вычислить двойной интеграл:

$$\iint_{D} (12xy + 9x^{2}y^{2}) dxdy;$$

$$D: x = 1; y = \sqrt{x}; y = -x^{2}.$$

Задание 3. Вычислить двойной интеграл:

$$\iint_{D} y e^{xy/2} dx dy;$$

$$D: y = \ln 2; y = \ln 3; x = 2; x = 4.$$

Задание 4. Вычислить тройной интеграл:

$$\iiint\limits_V y^2 \cos\left(\frac{\pi}{4}xy\right) \, dx dy dz;$$

$$V: x = 0; y = -1; y = \frac{x}{2}; z = 0; z = -\pi^2.$$

Задание 5. Найти площадь фигуры, ограниченной линиями:

1)
$$y = \frac{25}{4} - x^2$$
; $y = x - \frac{5}{2}$;

2)
$$x^2 - 4x + y^2 = 0$$
; $x^2 - 8x + y^2 = 0$; $y = 0$; $y = \frac{x}{\sqrt{3}}$

Задание 6. Найти объем тела, заданного ограничивающими его поверхностями:

$$x = \frac{5\sqrt{y}}{2}$$
; $x = \frac{5y}{6}$; $z = 0$; $z = \frac{5}{6}(3 + \sqrt{y})$.

Вариант 16

Задание 1. Изменить порядок интегрирования:

$$\int_{0}^{\pi/4} dx \int_{0}^{\sin x} f(x; y) dy + \int_{\pi/4}^{\pi/2} dx \int_{0}^{\cos x} f(x; y) dy.$$

Задание 2. Вычислить двойной интеграл:

$$\iint_{D} (18x^{2}y^{2} + 32x^{3}y^{3}) dxdy;$$

$$D: x = 1; y = -\sqrt{x}; y = x^{3}.$$

Задание 3. Вычислить двойной интеграл:

$$\iint_{D} 2y \cos 2xy \, dx dy;$$

$$D: y = \frac{\pi}{4}; y = \frac{\pi}{2}; x = 1; x = 2.$$

Задание 4. Вычислить тройной интеграл:

$$\iiint_{V} 2x^{2}z \operatorname{sh}(2xyz) \, dx \, dy \, dz;$$

$$V: x = 0; x = 2; \ y = 0; y = \frac{1}{2}; z = 0; z = \frac{1}{2}.$$

Задание 5. Найти площадь фигуры, ограниченной линиями:

1)
$$x^2 + y^2 = 72$$
; $6y = -x^2 \ (y \le 0)$;

2)
$$y^2 - 2y + x^2 = 0$$
; $y^2 - 4y + x^2 = 0$; $x = 0$; $y = \sqrt{3}x$.

Задание 6. Найти объем тела, заданного ограничивающими его поверхностями:

$$x = 15\sqrt{y}$$
; $x = 15y$; $z = 0$; $z = 15(1 + \sqrt{y})$.

Вариант 17

Задание 1. Изменить порядок интегрирования:

$$\int_{-\sqrt{2}}^{-1} dx \int_{-\sqrt{2-x^2}}^{0} f(x;y)dy + \int_{-1}^{0} dx \int_{x}^{0} f(x;y)dy.$$

Задание 2. Вычислить двойной интеграл:

$$\iint_{D} (4xy + 176x^{3}y^{3}) dxdy;$$

$$D: x = 1; y = \sqrt[3]{x}; y = -x^{2}.$$

Задание 3. Вычислить двойной интеграл:

$$\iint_{D} 4y^{2} \sin xy \, dx dy;$$

$$D: y = \sqrt{\frac{\pi}{2}}; y = x; x = 0.$$

Задание 4. Вычислить тройной интеграл:

$$\iiint_{V} 8y^{2}ze^{-xyz} dxdydz;$$

$$V: x = 0; x = 2; y = 0; y = -1; z = 0; z = 2.$$

Задание 5. Найти площадь фигуры, ограниченной линиями:

1)
$$y = \frac{1}{x}$$
; $y = 6e^x$; $y = 1$; $y = 6$;
2) $x^2 - 4x + y^2 = 0$; $x^2 - 6x + y^2 = 0$; $y = \frac{x}{\sqrt{3}}$; $y = \sqrt{3}x$.

Задание 6. Найти объем тела, заданного ограничивающими его поверхностями:

$$y = \sqrt{x}$$
; $y = 0$; $z = 0$; $z = 15x$; $x^2 + y^2 = 2$.

Вариант 18

Задание 1. Изменить порядок интегрирования:

$$\int_{0}^{1} dy \int_{0}^{3\sqrt{y}} f(x;y) dx + \int_{1}^{2} dy \int_{0}^{2-y} f(x;y) dx.$$

Задание 2. Вычислить двойной интеграл:

$$\iint_{D} (4xy + 16x^{3}y^{3}) dxdy;$$

$$D: x = 1; y = -\sqrt[3]{x}; y = x^{3}.$$

Задание 3. Вычислить двойной интеграл:

$$\iint_{D} y e^{xy/4} dx dy;$$

$$D: y = \ln 2; y = \ln 3; x = 4; x = 8.$$

Задание 4. Вычислить тройной интеграл:

$$\iiint\limits_{V} y^2 z \cos(xyz) \ dxdydz;$$

$$V: x = 1; y = 0; y = 2x; z = 0; z = 36.$$

Задание 5. Найти площадь фигуры, ограниченной линиями:

1)
$$y = \sqrt{24 - x^2}$$
; $2\sqrt{3}y = x^2$; $x = 0$ ($x \ge 0$);

2)
$$x^2 - 2x + y^2 = 0$$
; $x^2 - 6x + y^2 = 0$; $y = 0$; $y = x$.

Задание 6. Найти объем тела, заданного ограничивающими его поверхностями:

$$x = \frac{5}{6}\sqrt{y}$$
; $x = \frac{5}{18}y$; $z = 0$; $z = \frac{5}{18}(3 + \sqrt{y})$.

Вариант 19

Задание 1. Изменить порядок интегрирования:

$$\int_{0}^{\pi/4} dy \int_{0}^{\sin y} f(x; y) dx + \int_{\pi/4}^{\pi/2} dy \int_{0}^{\cos y} f(x; y) dx.$$

Задание 2. Вычислить двойной интеграл:

$$\iint_{D} (36x^{2}y^{2} - 96x^{3}y^{3}) dxdy;$$

$$D \cdot x = 1 \cdot y = \sqrt[3]{x} \cdot y = -x^{3}$$

Задание 3. Вычислить двойной интеграл:

$$\iint_{D} y \sin 2xy \, dx dy;$$

$$D: y = \frac{\pi}{2}; y = \frac{3\pi}{2}; x = \frac{1}{2}; x = 2.$$

Задание 4. Вычислить тройной интеграл:

$$\iiint\limits_{V} x^2 \sin\left(\frac{\pi}{2}xy\right) \, dx dy dz;$$

$$V: x = 2; y = 0; y = x; z = 0; z = \pi.$$

Задание 5. Найти площадь фигуры, ограниченной линиями:

1)
$$x = 5 - y^2$$
; $x = -4y$;

2)
$$y^2 - 2y + x^2 = 0$$
; $y^2 - 10y + x^2 = 0$; $y = \frac{x}{\sqrt{3}}$; $y = \sqrt{3}x$.

Задание 6. Найти объем тела, заданного ограничивающими его поверхностями:

$$x = 7\sqrt{3y}$$
; $x = 2\sqrt{3y}$; $z = 0$; $y + z = 3$.

Вариант 20

Задание 1. Изменить порядок интегрирования:

$$\int_{0}^{1} dy \int_{-\sqrt{y}}^{0} f(x;y) dx + \int_{1}^{\sqrt{2}} dy \int_{-\sqrt{2-y^{2}}}^{0} f(x;y) dx.$$

Задание 2. Вычислить двойной интеграл:

$$\iint_{D} (18x^{2}y^{2} + 32x^{3}y^{3}) dxdy;$$

$$D: x = 1; y = -\sqrt[3]{x}; y = x^{3}.$$

Задание 3. Вычислить двойной интеграл:

$$\iint_{D} y^{2} \cos xy \, dxdy;$$

$$D: y = x; y = \sqrt{\pi}; x = 0$$

Задание 4. Вычислить тройной интеграл:

$$\iiint\limits_V y^2 \operatorname{ch}(2xy) \ dxdydz;$$

$$V: x = 0; y = 1; y = x; z = 0; z = 8.$$

Задание 5. Найти площадь фигуры, ограниченной линиями:

1)
$$y = 20 - x^2$$
; $y = -8x$;

2)
$$x^2 - 2x + y^2 = 0$$
; $x^2 - 10x + y^2 = 0$; $y = 0$; $y = \sqrt{3}x$.

Задание 6. Найти объем тела, заданного ограничивающими его поверхностями:

$$x = 16\sqrt{2y}$$
; $x = \sqrt{2y}$; $z = 0$; $y + z = 2$.

Вариант 21

Задание 1. Изменить порядок интегрирования:

$$\int_{0}^{1} dy \int_{-y}^{0} f(x; y) dx + \int_{1}^{\sqrt{2}} dy \int_{-\sqrt{2-y^{2}}}^{0} f(x; y) dx.$$

Задание 2. Вычислить двойной интеграл:

$$\iint_{D} (9x^{2}y^{2} + 48x^{3}y^{3}) dxdy;$$

$$D: x = 1; y = \sqrt{x}; y = -x^{2}.$$

Задание 3. Вычислить двойной интеграл:

$$\iint_{D} y^{2} \cos \frac{xy}{2} dxdy;$$

$$D: y = \sqrt{\frac{\pi}{2}}; y = \frac{x}{2}; x = 0.$$

Задание 4. Вычислить тройной интеграл:

$$\iiint_{V} x^{2} \sinh(2xy) \ dxdydz;$$

$$V: x = -1; y = 0; y = x; z = 0; z = 8.$$

Задание 5. Найти площадь фигуры, ограниченной линиями:

1)
$$y = \frac{\sqrt{x}}{2}$$
; $y = \frac{1}{2x}$; $x = 16$;
2) $x^2 - 4x + y^2 = 0$; $x^2 - 8x + y^2 = 0$; $y = 0$; $y = \sqrt{3}x$.

Задание 6. Найти объем тела, заданного ограничивающими его поверхностями:

$$x = 0; x = \sqrt{2y}; z = 0; z = \frac{30y}{11}; x^2 + y^2 = 8.$$

Вариант 22

Задание 1. Изменить порядок интегрирования:

$$\int_{0}^{1} dy \int_{0}^{y} f(x;y)dx + \int_{1}^{e} dy \int_{\ln y}^{1} f(x;y)dx.$$

Задание 2. Вычислить двойной интеграл:

$$\iint_{D} (54x^{2}y^{2} + 150x^{4}y^{4}) dxdy;$$
$$D: x = 1; y = -\sqrt{x}; y = x^{3}.$$

Задание 3. Вычислить двойной интеграл:

$$\iint_{D} y^{2}e^{-xy/2}dxdy;$$

$$D: y = \sqrt{2}; y = x; x = 0.$$

Задание 4. Вычислить тройной интеграл:

$$\iiint\limits_{V} x^2 z \sin \frac{xyz}{2} \, dx dy dz;$$

$$V: x = 0; x = 1; \ y = 0; y = 4; z = 0; z = \pi.$$

Задание 5. Найти площадь фигуры, ограниченной линиями:

1)
$$x^2 + y^2 = 12$$
; $x\sqrt{6} = y^2$ ($x \ge 0$);

2)
$$y^2 - 4y + x^2 = 0$$
; $y^2 - 8y + x^2 = 0$; $x = 0$; $y = \sqrt{3}x$.

Задание 6. Найти объем тела, заданного ограничивающими его поверхностями:

$$x = \sqrt{y}$$
; $z = 0$; $z = \frac{12x}{5}$; $x + y = 2$.

Вариант 23

Задание 1. Изменить порядок интегрирования:

$$\int_{0}^{1} dy \int_{-\sqrt{y}}^{0} f(x; y) dx + \int_{1}^{2} dy \int_{-\sqrt{2-y}}^{0} f(x; y) dx.$$

Задание 2. Вычислить двойной интеграл:

$$\iint_{D} (8xy + 18x^{2}y^{2}) dxdy;$$

$$D: x = 1; y = \sqrt[3]{x}; y = -x^{2}.$$

Задание 3. Вычислить двойной интеграл:

$$\iint\limits_{D} 3y^2 \sin \frac{xy}{2} \, dxdy;$$

$$D: y = \frac{2}{3}x; y = \sqrt{\frac{4\pi}{3}}; x = 0.$$

Задание 4. Вычислить тройной интеграл:

$$\iiint\limits_V 2y^2e^{xy}\ dxdydz;$$

$$V: x = 0; y = 1; y = x; z = 0; z = 1.$$

Задание 5. Найти площадь фигуры, ограниченной линиями:

1)
$$x = \sqrt{36 - y^2}$$
; $x = 6 - \sqrt{36 - y^2}$;

2)
$$y^2 - 2y + x^2 = 0$$
; $y^2 - 6y + x^2 = 0$; $y = \frac{x}{\sqrt{3}}$; $x = 0$.

Задание 6. Найти объем тела, заданного ограничивающими его поверхностями:

$$y = \frac{5}{6}\sqrt{x}$$
; $y = \frac{5}{18}x$; $z = 0$; $z = \frac{5}{18}(3 + \sqrt{x})$.

Вариант 24

Задание 1. Изменить порядок интегрирования:

$$\int_{0}^{1} dx \int_{0}^{x^{2}} f(x; y) dy + \int_{1}^{2} dx \int_{0}^{2-x} f(x; y) dy.$$

Задание 2. Вычислить двойной интеграл:

$$\iint\limits_{D} (xy - 4x^3y^3) \, dxdy;$$

$$D: x = 1; y = -\sqrt{x}; y = x^3.$$

Задание 3. Вычислить двойной интеграл:

$$\iint_{D} y^{2} \cos 2xy \, dxdy;$$

$$D: y = \sqrt{\frac{\pi}{2}}; y = \frac{x}{2}; x = 0.$$

Задание 4. Вычислить тройной интеграл:

$$\iiint_{V} x^{2} \sinh(3xy) \ dxdydz;$$

$$V: x = 1; y = 0; y = 2x; z = 0; z = 36.$$

Задание 5. Найти площадь фигуры, ограниченной линиями:

1)
$$y = \frac{2}{x}$$
; $y = 7e^x$; $y = 2$; $y = 7$;

2)
$$x^2 - 2x + y^2 = 0$$
; $x^2 - 4x + y^2 = 0$; $y = 0$; $y = \frac{x}{\sqrt{3}}$

Задание 6. Найти объем тела, заданного ограничивающими его поверхностями:

$$y = 0$$
; $y = \sqrt{3x}$; $z = 0$; $z = \frac{5x}{11}$; $x^2 + y^2 = 18$.

Вариант 25

Задание 1. Изменить порядок интегрирования:

$$\int_{0}^{1/\sqrt{2}} dy \int_{0}^{\arcsin y} f(x;y)dx + \int_{1/\sqrt{2}}^{1} dy \int_{0}^{\arccos y} f(x;y)dx.$$

Задание 2. Вычислить двойной интеграл:

$$\iint_{D} (24xy - 48x^{3}y^{3}) dxdy;$$

$$D: x = 1; y = -\sqrt{x}; y = x^{2}.$$

Задание 3. Вычислить двойной интеграл:

$$\iint_{D} y \cos 2xy \, dx dy;$$

$$D: y = \frac{\pi}{2}; y = \frac{3\pi}{2}; x = \frac{1}{2}; x = 2.$$

Задание 4. Вычислить тройной интеграл:

$$\iiint\limits_V y^2 \operatorname{ch}(xy) \ dxdydz;$$

$$V: x = 0; y = -1; y = x; z = 0; z = 2.$$

Задание 5. Найти площадь фигуры, ограниченной линиями:

1)
$$y = 3\sqrt{x}$$
; $y = \frac{3}{x}$; $x = 4$;

2)
$$x^2 - 2x + y^2 = 0$$
; $x^2 - 6x + y^2 = 0$; $y = 0$; $y = \frac{x}{\sqrt{3}}$

Задание 6. Найти объем тела, заданного ограничивающими его поверхностями:

$$x = \sqrt{3y}$$
; $z = 0$; $z = \frac{4x}{5}$; $x + y = 6$.

Вариант 26

Задание 1. Изменить порядок интегрирования:

Порядок интегрирования.
$$\int_{-2}^{-1} dy \int_{0}^{\sqrt{2+y}} f(x;y) dx + \int_{-1}^{0} dy \int_{0}^{\sqrt{-y}} f(x;y) dx.$$

Задание 2. Вычислить двойной интеграл:

$$\iint\limits_{D} \left(\frac{4}{5}xy + \frac{9}{11}x^2y^2\right) dxdy;$$

$$D: x = 1; y = -\sqrt{x}; y = x^3.$$

Задание 3. Вычислить двойной интеграл:

$$\iint_{D} 12ye^{6xy}dxdy;$$

$$D: y = \ln 3; y = \ln 4; x = \frac{1}{6}; x = \frac{1}{3}.$$

Задание 4. Вычислить тройной интеграл:

$$\iiint\limits_{V} x^2 z \sin(xyz) \ dxdydz;$$

$$V: x = 0: x = 2: \ y = 0: y = \pi: z = 0: z = 0$$

Задание 5. Найти площадь фигуры, ограниченной линиями:

1)
$$y = \sqrt{12 - x^2}$$
; $y = 2\sqrt{3} - \sqrt{12 - x^2}$; $x = 0$ ($x \ge 0$);

2)
$$x^2 - 2x + y^2 = 0$$
; $x^2 - 4x + y^2 = 0$; $y = 0$; $y = \sqrt{3}x$.

Задание 6. Найти объем тела, заданного ограничивающими его поверхностями:

$$x = 0; x = \sqrt{3y}; z = 0; z = \frac{10y}{11}; x^2 + y^2 = 18.$$

Вариант 27

Задание 1. Изменить порядок интегрирования:

$$\int_{0}^{1} dx \int_{0}^{x} f(x; y) dy + \int_{1}^{\sqrt{2}} dx \int_{0}^{\sqrt{2-x^{2}}} f(x; y) dy.$$

Задание 2. Вычислить двойной интеграл:

$$\iint\limits_{D} \left(\frac{4}{5}xy + 9x^2y^2\right) dxdy;$$

$$D: x = 1; y = \sqrt{x}; y = -x^3.$$

Задание 3. Вычислить двойной интеграл:

$$\iint_{D} y^{2} \sin \frac{xy}{2} dxdy;$$

$$D: y = x; y = \sqrt{\pi}; x = 0.$$

Задание 4. Вычислить тройной интеграл:

$$\iiint\limits_V y^2 \cos \frac{\pi xy}{2} \, dx dy dz;$$

$$V: x = 0; y = -1; y = x; z = 0; z = 2\pi^2.$$

Задание 5. Найти площадь фигуры, ограниченной линиями:

1)
$$y = 27 - x^2$$
; $y = -6x$;

2)
$$x^2 - 2x + y^2 = 0$$
; $x^2 - 4x + y^2 = 0$; $y = \frac{x}{\sqrt{3}}$; $y = \sqrt{3}x$.

Задание 6. Найти объем тела, заданного ограничивающими его поверхностями:

$$x = \frac{5}{3}\sqrt{y}$$
; $x = \frac{5}{9}y$; $z = 0$; $z = \frac{5}{9}(3 + \sqrt{y})$.

Вариант 28

Задание 1. Изменить порядок интегрирования:

$$\int_{0}^{1} dy \int_{0}^{y^{3}} f(x; y) dx + \int_{1}^{2} dy \int_{0}^{2-y} f(x; y) dx.$$

Задание 2. Вычислить двойной интеграл:

$$\iint_{D} (4xy + 176x^{3}y^{3}) dxdy;$$

$$D: x = 1; y = \sqrt{x}; y = -x^{3}.$$

Задание 3. Вычислить двойной интеграл:

$$\iint\limits_{D} 3y \sin xy \, dx dy;$$

$$D: y = \frac{\pi}{2}; y = 3\pi; x = 1; x = 3.$$

Задание 4. Вычислить тройной интеграл:

$$\iiint\limits_V y^2 \operatorname{ch}(2xy) \ dxdydz;$$

$$V: x = 0; y = -2; y = 4x; z = 0; z = 2.$$

Задание 5. Найти площадь фигуры, ограниченной линиями:

1)
$$x^2 + y^2 = 36$$
; $3\sqrt{2}y = -x^2$ $(y \ge 0)$;

2)
$$y^2 - 4y + x^2 = 0$$
; $y^2 - 6y + x^2 = 0$; $x = 0$; $y = x$.

Задание 6. Найти объем тела, заданного ограничивающими его поверхностями:

$$y = 0$$
; $y = \sqrt{2x}$; $z = 0$; $z = \frac{15x}{11}$; $x^2 + y^2 = 8$.

Вариант 29

Задание 1. Изменить порядок интегрирования:

$$\int_{-2}^{-\sqrt{3}} dx \int_{0}^{\sqrt{4-x^2}} f(x;y)dy + \int_{-\sqrt{3}}^{0} dy \int_{0}^{2-\sqrt{4-x^2}} f(x;y)dy.$$

Задание 2. Вычислить двойной интеграл:

$$\iint_{D} (4xy + 16x^{3}y^{3}) dxdy;$$

$$D: x = 1; y = \sqrt[3]{x}; y = -x^{3}.$$

Задание 3. Вычислить двойной интеграл:

$$\iint_{D} y^{2} \cos xy \, dxdy;$$

$$D: y = 2x; y = \sqrt{\pi}; x = 0.$$

Задание 4. Вычислить тройной интеграл:

$$\iiint_{V} x^{2}z \operatorname{sh}(xyz) \ dxdydz;$$

$$V: x = 0; x = 2; \ y = 0; y = 1; \ z = 0; z = 1.$$

Задание 5. Найти площадь фигуры, ограниченной линиями:

1)
$$y = \sqrt{x}$$
; $y = \frac{1}{x}$; $x = 16$;

2)
$$y^2 - 4y + x^2 = 0$$
; $y^2 - 10y + x^2 = 0$; $y = \frac{x}{\sqrt{3}}$; $y = \sqrt{3}x$.

Задание 6. Найти объем тела, заданного ограничивающими его поверхностями:

$$x = \sqrt{2y}$$
; $z = 0$; $z = \frac{3x}{5}$; $x + y = 4$.

Вариант 30

Задание 1. Изменить порядок интегрирования:

$$\int_{-2}^{-\sqrt{3}} dx \int_{-\sqrt{4-x^2}}^{0} f(x;y)dy + \int_{-\sqrt{3}}^{0} dx \int_{\sqrt{4-x^2}-2}^{0} f(x;y)dy.$$

Задание 2. Вычислить двойной интеграл:

$$\iint_{D} (9x^{2}y^{2} + 25x^{4}y^{4}) dxdy;$$

$$D: x = 1; y = -\sqrt[3]{x}; y = x^{3}.$$

Задание 3. Вычислить двойной интеграл:

$$\iint\limits_{D} y^{2}e^{-xy/2}dxdy;$$

$$D: y = \frac{x}{2}; y = 1; x = 0.$$

Задание 4. Вычислить тройной интеграл:

$$\iiint_{V} y^{2}z \cos \frac{xyz}{9} \, dx dy dz;$$

$$V: x = 0; x = 9; \ y = 0; y = 1; z = 0; z = 2\pi.$$

Задание 5. Найти площадь фигуры, ограниченной линиями:

1)
$$y = \frac{2}{x}$$
; $y = 5e^x$; $y = 2$; $y = 5$;

2)
$$y^2 - 2y + x^2 = 0$$
; $y^2 - 10y + x^2 = 0$; $y = \frac{x}{\sqrt{3}}$; $x = 0$.

Задание 6. Найти объем тела, заданного ограничивающими его поверхностями:

$$y = 0$$
; $y = \sqrt{5x}$; $z = 0$; $z = \frac{3x}{11}$; $x^2 + y^2 = 50$.

Раздел 3. КОМПЛЕКСНЫЕ ЧИСЛА Вариант 1

Задание 1. Даны комплексные числа:

$$z_1 = 2 - 3i$$
; $z_2 = 4 + 5i$.

Вычислить:

1)
$$z_1 + z_2$$
;

2)
$$z_1 - z_2$$
;

3)
$$z_1 \cdot z_2$$

4)
$$\frac{z_1}{z_2}$$

Задание 2. Выполнить действия над комплексными числами, результат представить в алгебраической форме:

$$\frac{3i^{27} - \left(i\sqrt{3}\right)^2}{i^{17}}.$$

Задание 3. Даны комплексные числа:

$$z_1 = -2i; \ z_2 = 2 - 2i; \ z_3 = -\sqrt{3} + i.$$

Изобразить эти числа на комплексной плоскости и представить их в тригонометрической и показательной формах.

Задание 4. Используя тригонометрическую форму комплексных чисел, полученную в задании 3, вычислить:

1)
$$(z_2)^{44}$$
;

2)
$$\sqrt{z_3}$$
.

Задание 5. Решить уравнение:

1)
$$x^4 - 4x^3 + 16x^2 = 0, x \in \mathbb{C}$$
;

2)
$$z^2 + |\bar{z}| = 0, z \in \mathbb{C}$$
.

Задание 6. Изобразить на комплексной плоскости С множество точек, определяемое следующими условиями:

$$\begin{cases} |z + 2i| > 5; \\ Re \ z < 1. \end{cases}$$

Задание 7. Доказать:

$$z + \overline{z} = 2Re z$$
; $z - \overline{z} = 2iIm z$.

Вариант 2

Задание 1. Даны комплексные числа:

$$z_1 = 7 - 2i$$
; $z_2 = -3 + i$.

Вычислить:

1)
$$z_1 + z_2$$
;

3)
$$z_1 \cdot z_2$$
;

2)
$$z_1 - z_2$$
;

3)
$$z_1 \cdot z_2$$
;
4) $\frac{z_1}{z_2}$.

Задание 2. Выполнить действия над комплексными числами, результат представить в алгебраической форме:

$$\left(\frac{1-2i}{i^6}\right)^2 + \frac{1}{2-i}.$$

Задание 3. Даны комплексные числа:

$$z_1 = 16i; \ z_2 = 1 + \sqrt{3}i; \ z_3 = -1 - i.$$

Изобразить эти числа на комплексной плоскости и представить их в тригонометрической и показательной формах.

Задание 4. Используя тригонометрическую форму комплексных чисел, полученную в задании 3, вычислить:

1)
$$(z_3)^{21}$$
;

2)
$$\sqrt[4]{z_1}$$
.

Задание 5. Решить уравнение:

1)
$$x^4 - 2x^3 + 5x^2 = 0, x \in \mathbb{C}$$
;

$$2) |z| - iz = 1 - 2i, z \in \mathbb{C}.$$

Задание 6. Изобразить на комплексной плоскости С множество точек, определяемое следующими условиями:

$$2 \le |2z + i| \le 4.$$

Задание 7. Доказать:

$$\overline{\overline{z_1} + \overline{z_2}} = z_1 + z_2.$$

Вариант 3

Задание 1. Даны комплексные числа:

$$z_1 = -5 - i$$
; $z_2 = -4 + 8i$.

Вычислить:

1)
$$z_1 + z_2$$
;

2)
$$z_1 - z_2$$
;

3)
$$z_1 \cdot z_2$$
;
4) $\frac{z_1}{z_1}$.

4)
$$\frac{z_1}{z_2}$$
.

Задание 2. Выполнить действия над комплексными числами, результат представить в алгебраической форме:

$$\frac{3}{1-i^3} - \frac{1}{2i^4}$$

Задание 3. Даны комплексные числа:

$$z_1 = 2; \ z_2 = -2\sqrt{3} + 2i; \ z_3 = \sqrt{2} - \sqrt{2}i.$$

Изобразить эти числа на комплексной плоскости и представить их в тригонометрической и показательной формах.

Задание 4. Используя тригонометрическую форму комплексных чисел, полученную в задании 3, вычислить:

1)
$$(z_2)^{40}$$
;

2)
$$\sqrt[4]{z_1}$$
.

Задание 5. Решить уравнение:

1)
$$x^2 - 4x + 8 = 0, x \in \mathbb{C}$$
;

2)
$$z + 2i\overline{z} - 3 = 0, z \in \mathbb{C}$$
.

Задание 6. Изобразить на комплексной плоскости С множество точек, определяемое следующими условиями:

$$1 \le |z - i + 1| \le 2.$$

Задание 7. Доказать формулу Эйлера:

$$\cos \varphi = \frac{e^{i\varphi} + e^{-i\varphi}}{2}.$$

Вариант 4

Задание 1. Даны комплексные числа:

$$z_1 = 7 - 5i$$
; $z_2 = -6 + 2i$.

Вычислить:

1)
$$z_1 + z_2$$
;

3)
$$z_1 \cdot z_2$$

2)
$$z_1 - z_2$$
;

3)
$$z_1 \cdot z_2$$
;
4) $\frac{z_1}{z_2}$.

Задание 2. Выполнить действия над комплексными числами, результат представить в алгебраической форме:

$$\frac{3+2i}{(4i-1)\cdot i} + 7i^{35}.$$

Задание 3. Даны комплексные числа:

$$z_1 = 5i$$
; $z_2 = -3 - 3\sqrt{3}i$; $z_3 = -4 + 4i$.

Изобразить эти числа на комплексной плоскости и представить их в тригонометрической и показательной формах.

Задание 4. Используя тригонометрическую форму комплексных чисел, полученную в задании 3, вычислить:

1)
$$(z_2)^6$$
;

2)
$$\sqrt[3]{z_3}$$
.

Задание 5. Решить уравнение:

1)
$$x^4 + 2x^2 + 1 = 0, x \in \mathbb{C}$$
;
2) $\frac{2+5i}{x-y} - \frac{1-3i}{x+y} = \frac{-7x+12i}{y^2-x^2}, x, y \in \mathbb{R}$.

Задание 6. Изобразить на комплексной плоскости С множество точек, определяемое следующими условиями:

$$\begin{cases} |z| \le 2; \\ |z - 2| \le 2. \end{cases}$$

Задание 7. Доказать формулу Эйлера:

$$\sin \varphi = \frac{e^{i\varphi} - e^{-i\varphi}}{2i}.$$

Вариант 5

Задание 1. Даны комплексные числа:

$$z_1 = -1 + 9i; \ z_2 = -3 - 7i.$$

Вычислить:

1)
$$z_1 + z_2$$
;

3)
$$z_1 \cdot z_2$$

2)
$$z_1 - z_2$$
;

3)
$$z_1 \cdot z_2$$
;
4) $\frac{z_1}{z_2}$.

Задание 2. Выполнить действия над комплексными числами, результат представить в алгебраической форме:

$$(1+2i)^2 - \frac{8-i}{i^{33}}$$
.

Задание 3. Даны комплексные числа:

$$z_1 = -3; \ z_2 = -4 - 4i; \ z_3 = \sqrt{2} - \sqrt{\frac{2}{3}}i.$$

Изобразить эти числа на комплексной плоскости и представить их в тригонометрической и показательной формах.

Задание 4. Используя тригонометрическую форму комплексных чисел, полученную в задании 3, вычислить:

1)
$$(z_2)^{64}$$
;

2)
$$\sqrt[4]{z_1}$$
.

Задание 5. Решить уравнение:

1)
$$x^3 + 2x^2 + 10x = 0, x \in \mathbb{C}$$
;

$$(2)$$
 $\overline{z} = -4z + 1, z \in \mathbb{C}$.

Задание 6. Изобразить на комплексной плоскости С множество точек, определяемое следующими условиями:

$$\begin{cases} |z - i| \le 1; \\ Im \overline{z} \ge -1. \end{cases}$$

Задание 7. Доказать:

$$Re \frac{z-1}{z+1} = 0 \Leftrightarrow |z| = 1, \ (z \neq -1).$$

Вариант 6

Задание 1. Даны комплексные числа:

$$z_1 = 4 - 6i$$
; $z_2 = -1 - 9i$.

Вычислить:

1)
$$z_1 + z_2$$
;

2)
$$z_1 - z_2$$
;

3)
$$z_1 \cdot z_2$$
;
4) $\frac{z_1}{z_2}$.

4)
$$\frac{z_1}{z_2}$$
.

Задание 2. Выполнить действия над комплексными числами, результат представить в алгебраической форме:

$$\frac{(3-2i)^2}{1+i} - \frac{i}{1-i}.$$

Задание 3. Даны комплексные числа:

$$z_1 = 5i; \ z_2 = -3 + 3i; \ z_3 = 5 - 5\sqrt{3}i.$$

Изобразить эти числа на комплексной плоскости и представить их в тригонометрической и показательной формах.

Задание 4. Используя тригонометрическую форму комплексных чисел, полученную в задании 3, вычислить:

1)
$$(z_3)^{15}$$
;

2)
$$\sqrt[4]{z_2}$$
.

Задание 5. Решить уравнение:

1)
$$x^3 - 4x^2 + 16x = 0, x \in \mathbb{C}$$
;

2)
$$\frac{i}{x} + \frac{i}{y} + \frac{1}{6} = \frac{1}{x} - \frac{1}{y} + \frac{5i}{y}, x, y \in \mathbb{R}.$$

Задание 6. Изобразить на комплексной плоскости С множество точек, определяемое следующим условием:

$$Im \overline{z}^2 \leq 1.$$

Задание 7. Доказать:

$$z + \overline{z} = 2Re z$$
; $z - \overline{z} = 2iIm z$.

Вариант 7

Задание 1. Даны комплексные числа:

$$z_1 = 2 - 10i$$
; $z_2 = 3 + 7i$.

Вычислить:

1)
$$z_1 + z_2$$
;

2)
$$z_1 - z_2$$
;

3)
$$z_1 \cdot z_2$$
;
4) $\frac{z_1}{z_2}$.

Задание 2. Выполнить действия над комплексными числами, результат представить в алгебраической форме:

$$(3+2i)(4i-1) + \frac{2i^{17}}{2-i}.$$

Задание 3. Даны комплексные числа:

$$z_1 = -3; \ z_2 = 2 + 2i; \ z_3 = \frac{1}{2} - \frac{\sqrt{3}}{2}i.$$

Изобразить эти числа на комплексной плоскости и представить их в тригонометрической и показательной формах.

Задание 4. Используя тригонометрическую форму комплексных чисел, полученную в задании 3, вычислить:

1)
$$(z_2)^9$$
;

2)
$$\sqrt[3]{z_3}$$
.

Задание 5. Решить уравнение:

1)
$$x^5 - 4x^4 + 9x^3 = 0, x \in \mathbb{C}$$
;

2)
$$z^2 + \overline{z} = 0, z \in \mathbb{C}$$
.

Задание 6. Изобразить на комплексной плоскости С множество точек, определяемое следующим условием:

$$1 \le |z + 2 + i| \le 3$$
.

Задание 7. Доказать:

$$\overline{z_1 - z_2} = \overline{z_1} - \overline{z_2}.$$

Вариант 8

Задание 1. Даны комплексные числа:

$$z_1 = -5 - 6i$$
; $z_2 = 8 - 9i$.

Вычислить:

1)
$$z_1 + z_2$$
;

2)
$$z_1 - z_2$$
;

3)
$$z_1 \cdot z_2$$
;
4) $\frac{z_1}{z_2}$.

1)
$$\frac{\bar{z_1}}{z_2}$$
.

Задание 2. Выполнить действия над комплексными числами, результат представить в алгебраической форме:

$$(i-1)^3 + \frac{5}{2i-3}.$$

Задание 3. Даны комплексные числа:

$$z_1=-7i;\ z_2=7+7i;\ z_3=-\sqrt{3}+i.$$

Изобразить эти числа на комплексной плоскости и представить их в тригонометрической и показательной формах.

Задание 4. Используя тригонометрическую форму комплексных чисел, полученную в задании 3, вычислить:

1)
$$(z_2)^{80}$$
;

2)
$$\sqrt[4]{z_1}$$
.

Задание 5. Решить уравнение:

1)
$$x^4 + 9x^2 + 20 = 0, x \in \mathbb{C}$$
;

2)
$$|z| - z = 1 + 2i, z \in \mathbb{C}$$
.

Задание 6. Изобразить на комплексной плоскости С множество точек, определяемое следующими условиями:

$$\begin{cases} |z| \le 4; \\ |Re \, \overline{z}| \le 2. \end{cases}$$

Задание 7. Доказать:

$$\overline{\overline{z_1} + \overline{z_2}} = z_1 + z_2.$$

Вариант 9

Задание 1. Даны комплексные числа:

$$z_1 = 11 - 2i; \ z_2 = -4 - 7i.$$

Вычислить:

1)
$$z_1 + z_2$$
;

3)
$$z_1 \cdot z_2$$
;
4) $\frac{z_1}{z_2}$.

2)
$$z_1 - z_2$$
;

4)
$$\frac{z_1}{z_2}$$

Задание 2. Выполнить действия над комплексными числами, результат представить в алгебраической форме:

$$\frac{1+i}{2-i} + \frac{2-i}{1+2i} + 2i^{43}$$
.

Задание 3. Даны комплексные числа:

$$z_1 = -4; \ z_2 = -4 + 4i; \ z_3 = -\frac{\sqrt{3}}{2} - \frac{1}{2}i.$$

Изобразить эти числа на комплексной плоскости и представить их в тригонометрической и показательной формах.

Задание 4. Используя тригонометрическую форму комплексных чисел, полученную в задании 3, вычислить:

1)
$$(z_3)^{15}$$
;

2)
$$\sqrt[3]{z_1}$$
.

Задание 5. Решить уравнение:

1)
$$x^4 + x^3 + x^2 = 0$$
, $x \in \mathbb{C}$;

2)
$$(1+i)x + (-2+5i)y = -4+17i, x, y \in \mathbb{R}$$
.

Задание 6. Изобразить на комплексной плоскости С множество точек, определяемое следующими условиями:

$$\begin{cases} |Im \, \overline{z}| \ge 2; \\ |z| \le 4. \end{cases}$$

Задание 7. Доказать формулу Эйлера:

$$\sin \varphi = \frac{e^{i\varphi} - e^{-i\varphi}}{2i}.$$

Вариант 10

Задание 1. Даны комплексные числа:

$$z_1 = 7 - 5i; \ z_2 = -8 + 2i.$$

Вычислить:

1)
$$z_1 + z_2$$
;

3)
$$z_1 \cdot z_2$$

2)
$$z_1 - z_2$$
;

3)
$$z_1 \cdot z_2$$
;
4) $\frac{z_1}{z_2}$.

Задание 2. Выполнить действия над комплексными числами, результат представить в алгебраической форме:

$$\frac{i^5+2}{5i^{14}} + \frac{i-1}{i+2}.$$

Задание 3. Даны комплексные числа:

$$z_1 = -4$$
; $z_2 = -4 - 4i$; $z_3 = -\sqrt{3} + i$.

Изобразить эти числа на комплексной плоскости и представить их в тригонометрической и показательной формах.

Задание 4. Используя тригонометрическую форму комплексных чисел, полученную в задании 3, вычислить:

1)
$$(z_3)^{12}$$
;

2)
$$\sqrt[3]{z_1}$$
.

Задание 5. Решить уравнение:

1)
$$x^4 + 6x^2 + 8 = 0, x \in \mathbb{C}$$
;

2)
$$z + 2i \cdot \overline{z} - 3 = 0, z \in \mathbb{C}$$
.

Задание 6. Изобразить на комплексной плоскости С множество точек, определяемое следующими условиями:

$$\begin{cases} |z - i| \le 2; \\ Im \ z \ge 1. \end{cases}$$

Задание 7. Доказать:

$$e^{\pi ni} = (-1)^n, n \in \mathbb{N}.$$

Вариант 11

Задание 1. Даны комплексные числа:

$$z_1 = -3 + 5i$$
; $z_2 = 12 - i$.

Вычислить:

1) $z_1 + z_2$;

2)
$$z_1 - z_2$$
;

3) $z_1 \cdot z_2$; 4) $\frac{z_1}{z_2}$.

Задание 2. Выполнить действия над комплексными числами, результат представить в алгебраической форме:

$$\frac{4+i^{17}}{2-i}+i^6+\frac{1}{i}.$$

Задание 3. Даны комплексные числа:

$$z_1 = 3i$$
; $z_2 = 3 - 3i$; $z_3 = -\frac{\sqrt{3}}{2} - \frac{1}{2}i$.

Изобразить эти числа на комплексной плоскости и представить их в тригонометрической и показательной формах.

Задание 4. Используя тригонометрическую форму комплексных чисел, полученную в задании 3, вычислить:

1)
$$(z_3)^{39}$$
;

2)
$$\sqrt{z_2}$$
.

Задание 5. Решить уравнение:

- 1) $x^3 6x^2 + 10x = 0, x \in \mathbb{C}$;
- 2) $x + y ixy = 1, x, y \in \mathbb{R}$.

Задание 6. Изобразить на комплексной плоскости С множество точек, определяемое следующим условием:

$$|\pi - \arg z| < \frac{\pi}{4}.$$

Задание 7. Доказать формулу Эйлера:

$$\cos \varphi = \frac{e^{i\varphi} + e^{-i\varphi}}{2}.$$

Вариант 12

Задание 1. Даны комплексные числа:

$$z_1 = 4 - 10i$$
; $z_2 = -2 + 7i$.

Вычислить:

1)
$$z_1 + z_2$$
;

3)
$$z_1 \cdot z_2$$
;
4) $\frac{z_1}{z_2}$.

2)
$$z_1 - z_2$$
;

4)
$$\frac{z_1}{z_2}$$

Задание 2. Выполнить действия над комплексными числами, результат представить в алгебраической форме:

$$8i^{65} - \frac{2+5i}{1+i}$$

Задание 3. Даны комплексные числа:

$$z_1 = -2; \ z_2 = \sqrt{3} + i; \ z_3 = -2 + 2i.$$

51

Изобразить эти числа на комплексной плоскости и представить их в тригонометрической и показательной формах.

Задание 4. Используя тригонометрическую форму комплексных чисел, полученную в задании 3, вычислить:

1)
$$(z_2)^{21}$$
;

2)
$$\sqrt[3]{z_1}$$
.

Задание 5. Решить уравнение:

1)
$$x^3 + 2x^2 + 5x = 0, x \in \mathbb{C}$$
;

2)
$$\frac{1}{z-i} + \frac{2+i}{1+i} = 1, z \in \mathbb{C}.$$

Задание 6. Изобразить на комплексной плоскости С множество точек, определяемое следующим условием:

$$Im \overline{z}^2 > 1.$$

Задание 7. Доказать:

$$Re \frac{z-1}{z+1} = 0 \Leftrightarrow |z| = 1, \ (z \neq -1).$$

Вариант 13

Задание 1. Даны комплексные числа:

$$z_1 = -6 - 8i$$
; $z_2 = 5 - 9i$.

Вычислить:

1)
$$z_1 + z_2$$
;

3)
$$z_1 \cdot z_2$$
;
4) $\frac{z_1}{z_2}$.

2)
$$z_1 - z_2$$
;

4)
$$\frac{z_1}{z_2}$$
.

Задание 2. Выполнить действия над комплексными числами, результат представить в алгебраической форме:

$$\frac{2i}{2+i} - \frac{i^{96}}{5}$$
.

Задание 3. Даны комплексные числа:

$$z_1 = 1$$
; $z_2 = 1 + i$; $z_3 = -\sqrt{3} - i$.

Изобразить эти числа на комплексной плоскости и представить их в тригонометрической и показательной формах.

Задание 4. Используя тригонометрическую форму комплексных чисел, полученную в задании 3, вычислить:

1)
$$(z_2)^{104}$$
;

2)
$$\sqrt[4]{z_1}$$
.

Задание 5. Решить уравнение:

1)
$$x^4 + 4x^2 + 4 = 0$$
, $x \in \mathbb{C}$;

2)
$$(2x+i)(1+i) + 3(x+y)i = 0, x, y \in \mathbb{R}$$
.

Задание 6. Изобразить на комплексной плоскости С множество точек, определяемое следующим условием:

$$|z| \ge 2 - Im z$$
.

Задание 7. Доказать:

$$e^{2\pi ni}=1, n\in\mathbb{N}.$$

Вариант 14

Задание 1. Даны комплексные числа:

$$z_1 = 3 - 9i$$
; $z_2 = -5 + 4i$.

Вычислить:

1)
$$z_1 + z_2$$
;

2)
$$z_1 - z_2$$
;

3)
$$z_1 \cdot z_2$$
;
4) $\frac{z_1}{z_2}$.

4)
$$\frac{z_1}{z_2}$$
.

Задание 2. Выполнить действия над комплексными числами, результат представить в алгебраической форме:

$$\frac{1}{(2-i)^2} + 2i(1+i^{32}).$$

Задание 3. Даны комплексные числа:

$$z_1 = -3$$
; $z_2 = 2 - 2i$; $z_3 = -2\sqrt{3} + 2i$.

Изобразить эти числа на комплексной плоскости и представить их в тригонометрической и показательной формах.

Задание 4. Используя тригонометрическую форму комплексных чисел, полученную в задании 3, вычислить:

1)
$$(z_2)^{84}$$
;

2)
$$\sqrt[3]{z_3}$$
.

Задание 5. Решить уравнение:

1)
$$x^3 + 2x^2 + 4x = 0, x \in \mathbb{C}$$
;

2)
$$(-x + 3yi) + (\frac{3}{2}y + 2xi) = 4 + 8i, x, y \in \mathbb{R}.$$

Задание 6. Изобразить на комплексной плоскости С множество точек, определяемое следующими условиями:

$$\begin{cases} Im (z - i) \le 0; \\ -\frac{\pi}{4} \le \arg z \le \frac{\pi}{4}. \end{cases}$$

Задание 7. Доказать:

$$e^{\pi ni}=(-1)^n, n\in\mathbb{N}.$$

Вариант 15

Задание 1. Даны комплексные числа:

$$z_1 = -10 + 3i$$
; $z_2 = 6 + 2i$.

Вычислить:

1)
$$z_1 + z_2$$
;

2)
$$z_1 - z_2$$
;

3)
$$z_1 \cdot z_2$$
;

3)
$$z_1 \cdot z_2$$
;
4) $\frac{z_1}{z_2}$.

Задание 2. Выполнить действия над комплексными числами, результат представить в алгебраической форме:

$$\frac{(i^{31}-2)^3}{2-i} - \frac{i}{i+3}.$$

Задание 3. Даны комплексные числа:

$$z_1 = 32; \ z_2 = \frac{3}{2} - \frac{3\sqrt{2}}{2}i; \ z_3 = \sqrt{3} + i.$$

Изобразить эти числа на комплексной плоскости и представить их в тригонометрической и показательной формах.

Задание 4. Используя тригонометрическую форму комплексных чисел, полученную в задании 3, вычислить:

1)
$$(z_3)^{60}$$
;

2)
$$\sqrt[5]{z_1}$$
.

Задание 5. Решить уравнение:

1)
$$x^3 + 4x^2 + 5x = 0, x \in \mathbb{C}$$
;

2)
$$(4-x)(1+i) + (i-y)i = 13+i, x, y \in \mathbb{R}$$
.

Задание 6. Изобразить на комплексной плоскости С множество точек, определяемое следующими условиями:

$$\begin{cases} |z| \le 4; \\ 0 \le \arg z \le \frac{\pi}{2}. \end{cases}$$

Задание 7. Выразить $\sin 3\varphi$ через $\cos \varphi$ и $\sin \varphi$ с помощью формулы Муавра.

Вариант 16

Задание 1. Даны комплексные числа:

$$z_1 = -1 - 10i$$
; $z_2 = 11 - i$.

Вычислить:

1)
$$z_1 + z_2$$
;

2)
$$z_1 - z_2$$
;

3)
$$z_1 \cdot z_2$$
;
4) $\frac{z_1}{z_2}$.

4)
$$\frac{z_1}{z_2}$$
.

Задание 2. Выполнить действия над комплексными числами, результат представить в алгебраической форме:

$$i^{63} - \frac{1+i}{1-i}$$
.

Задание 3. Даны комплексные числа:

$$z_1=-i; \ z_2=2+2i; \ z_3=-1-\sqrt{3}i.$$

Изобразить эти числа на комплексной плоскости и представить их в тригонометрической и показательной формах.

Задание 4. Используя тригонометрическую форму комплексных чисел, полученную в задании 3, вычислить:

1)
$$(z_2)^{120}$$
;

2)
$$\sqrt[3]{z_1}$$
.

Задание 5. Решить уравнение:

1)
$$x^4 + 6x^2 + 9 = 0, x \in \mathbb{C}$$
;

2)
$$(2-7i)x + (8+6i)y = (-6+5i)x - 8, x, y \in \mathbb{R}$$
.

Задание 6. Изобразить на комплексной плоскости С множество точек, определяемое следующими условиями:

$$\begin{cases} |z-1| \le 1; \\ -\frac{\pi}{4} \le \arg z \le \frac{\pi}{4}. \end{cases}$$

Задание 7. Доказать:

$$\overline{\overline{z_1} + \overline{z_2}} = z_1 + z_2.$$

Вариант 17

Задание 1. Даны комплексные числа:

$$z_1 = -5 + 7i; \ z_2 = -9 + 2i.$$

Вычислить:

1)
$$z_1 + z_2$$
;

3)
$$z_1 \cdot z_2$$
;

2)
$$z_1 - z_2$$
; 4) $\frac{z_1}{z_2}$.

Задание 2. Выполнить действия над комплексными числами, результат представить в алгебраической форме:

$$\frac{-1-3i}{1-i^{14}}-\frac{1}{i}.$$

Задание 3. Даны комплексные числа:

$$z_1 = -9i$$
; $z_2 = -2 + 2\sqrt{3}i$; $z_3 = 4 - 4i$.

Изобразить эти числа на комплексной плоскости и представить их в тригонометрической и показательной формах.

Задание 4. Используя тригонометрическую форму комплексных чисел, полученную в задании 3, вычислить:

1)
$$(z_2)^{60}$$
;

2)
$$\sqrt[4]{z_1}$$
.

Задание 5. Решить уравнение:

1)
$$x^4 + 4x^2 + 3 = 0, x \in \mathbb{C}$$
;

2)
$$y^2 + iy^2 + 6 + i = 2x + ix, x, y \in \mathbb{R}$$
.

Задание 6. Изобразить на комплексной плоскости € множество точек, определяемое следующими условиями:

$$\begin{cases} |z+1+i| \ge 1; \\ Re \ z \ge -1. \end{cases}$$

Задание 7. Доказать:

$$z + \overline{z} = 2Re z$$
; $z - \overline{z} = 2iIm z$.

Вариант 18

Задание 1. Даны комплексные числа:

$$z_1 = 3 - 12i$$
; $z_2 = 8 - 5i$.

Вычислить:

1)
$$z_1 + z_2$$
;

3)
$$z_1 \cdot z_2$$
;

2)
$$z_1 - z_2$$
;

4)
$$\frac{z_1}{z_2}$$
.

Задание 2. Выполнить действия над комплексными числами, результат представить в алгебраической форме:

$$(2i-1)^2 - \frac{4}{i^{49}}.$$

Задание 3. Даны комплексные числа:

$$z_1 = -\frac{1}{2}i; \ z_2 = -1 + \sqrt{3}i; \ z_3 = -\sqrt{2} - \sqrt{2}i.$$

Изобразить эти числа на комплексной плоскости и представить их в тригонометрической и показательной формах.

Задание 4. Используя тригонометрическую форму комплексных чисел, полученную в задании 3, вычислить:

1)
$$(z_2)^{27}$$
;

2)
$$\sqrt[4]{z_3}$$
.

Задание 5. Решить уравнение:

1)
$$x^4 - 6x^3 + 25x^2 = 0, x \in \mathbb{C}$$
;

2)
$$|z| - z = 1 + 2i, z \in \mathbb{C}$$
.

Задание 6. Изобразить на комплексной плоскости С множество точек, определяемое следующими условиями:

$$2 < |z - 2| < 3$$
.

Задание 7. Доказать формулу Эйлера:

$$\cos \varphi = \frac{e^{i\varphi} + e^{-i\varphi}}{2}.$$

Вариант 19

Задание 1. Даны комплексные числа:

$$z_1 = -6 + 8i$$
; $z_2 = -14 + 3i$.

Вычислить:

1)
$$z_1 + z_2$$
;

$$(z_1 \cdot z_2)$$

2)
$$z_1 - z_2$$
;

3)
$$z_1 \cdot z_2$$
;
4) $\frac{z_1}{z_2}$.

Задание 2. Выполнить действия над комплексными числами, результат представить в алгебраической форме:

$$\frac{2i}{2+i} - \frac{1}{5i^{34}}.$$

Задание 3. Даны комплексные числа:

$$z_1 = -8i; \ z_2 = 1 + i; \ z_3 = -\frac{\sqrt{3}}{2} + \frac{1}{2}i.$$

Изобразить эти числа на комплексной плоскости и представить их в тригонометрической и показательной формах.

Задание 4. Используя тригонометрическую форму комплексных чисел, полученную в задании 3, вычислить:

1)
$$(z_2)^{80}$$
;

2)
$$\sqrt[3]{z_1}$$
.

Задание 5. Решить уравнение:

1)
$$x^5 - 6x^4 + 11x^3 = 0, x \in \mathbb{C}$$
;

2)
$$z^2 + \overline{z} = 0, z \in \mathbb{C}$$
.

Задание 6. Изобразить на комплексной плоскости С множество точек, определяемое следующим условием:

$$|z - i| = |z + 2|.$$

Задание 7. Доказать формулу Эйлера:

$$\sin \varphi = \frac{e^{i\varphi} - e^{-i\varphi}}{2i}.$$

Вариант 20

Задание 1. Даны комплексные числа:

$$z_1 = 6 - 7i$$
; $z_2 = -9 - 5i$.

Вычислить:

1)
$$z_1 + z_2$$
;

3)
$$z_1 \cdot z_2$$
;
4) $\frac{z_1}{z_2}$.

2)
$$z_1 - z_2$$
;

4)
$$\frac{z_1}{z_2}$$
.

Задание 2. Выполнить действия над комплексными числами, результат представить в алгебраической форме:

$$\frac{(2-i)^2}{i-1} + 2i^{56}$$
.

Задание 3. Даны комплексные числа:

$$z_1 = 3$$
; $z_2 = 2 + 2\sqrt{3}i$; $z_3 = 2i$.

Изобразить эти числа на комплексной плоскости и представить их в тригонометрической и показательной формах.

Задание 4. Используя тригонометрическую форму комплексных чисел, полученную в задании 3, вычислить:

1) $(z_2)^{30}$;

2)
$$\sqrt[4]{z_1}$$
.

Задание 5. Решить уравнение:

1) $x^3 - 4x^2 + 16x = 0, x \in \mathbb{C}$;

2)
$$-\frac{1}{2}i(x-iy) + i\left(\frac{1}{2}x^2 + ixy\right) = -\frac{1}{2} + i, x, y \in \mathbb{R}.$$

Задание 6. Изобразить на комплексной плоскости € множество точек, определяемое следующими условиями:

$$\begin{cases} |z - i| \le 1; \\ \frac{\pi}{4} \le \arg z \le \frac{\pi}{2}. \end{cases}$$

Задание 7. Выразить $\cos 3\varphi$ через $\cos \varphi$ и $\sin \varphi$ с помощью формулы Муавра.

Вариант 21

Задание 1. Даны комплексные числа:

$$z_1 = 5 - 9i; \ z_2 = -11 + 4i.$$

Вычислить:

1) $z_1 + z_2$;

3)
$$z_1 \cdot z_2$$
;
4) $\frac{z_1}{z_2}$.

2) $z_1 - z_2$;

Задание 2. Выполнить действия над комплексными числами, результат представить в алгебраической форме:

$$\frac{1}{1+4i} - \frac{i^{29}}{4-i}.$$

Задание 3. Даны комплексные числа:

$$z_1 = 5i; \ z_2 = -\frac{1}{2} + \frac{1}{2\sqrt{3}}i; \ z_3 = \sqrt{3} - \sqrt{3}i.$$

Изобразить эти числа на комплексной плоскости и представить их в тригонометрической и показательной формах.

Задание 4. Используя тригонометрическую форму комплексных чисел, полученную в задании 3, вычислить:

1) $(z_3)^{10}$;

2)
$$\sqrt[3]{z_1}$$
.

Задание 5. Решить уравнение:

1) $x^4 + 2x^2 + 1 = 0, x \in \mathbb{C}$;

2)
$$(2+3i)x + (8+i)y = 2i-6, x, y \in \mathbb{R}$$
.

Задание 6. Изобразить на комплексной плоскости € множество точек, определяемое следующими условиями:

$$\begin{cases} |Im z| \le 2; \\ |z| > 4. \end{cases}$$

Задание 7. Доказать:

$$\overline{\overline{z_1} + \overline{z_2}} = z_1 + z_2.$$

Вариант 22

Задание 1. Даны комплексные числа:

$$z_1 = -7 - 3i$$
; $z_2 = 4 + 8i$.

Вычислить:

1)
$$z_1 + z_2$$
;

3)
$$z_1 \cdot z_2$$
;

2)
$$z_1 - z_2$$
;

3)
$$z_1 \cdot z_2$$
;
4) $\frac{z_1}{z_2}$.

Задание 2. Выполнить действия над комплексными числами, результат представить в алгебраической форме:

$$(1+3i)^2 + \frac{1+i}{2i^{30}}$$

Задание 3. Даны комплексные числа:

$$z_1 = -2i; \ z_2 = -2 - 2\sqrt{3}i; \ z_3 = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i.$$

Изобразить эти числа на комплексной плоскости и представить их в тригонометрической и показательной формах.

Задание 4. Используя тригонометрическую форму комплексных чисел, полученную в задании 3, вычислить:

1)
$$(z_3)^{24}$$
;

2)
$$\sqrt[3]{z_1}$$
.

Задание 5. Решить уравнение:

1)
$$4x^4 - 2x^3 + x^2 = 0, x \in \mathbb{C}$$
;

1)
$$4x^4 - 2x^3 + x^2 = 0, x \in \mathbb{C};$$

2) $\frac{2+5i}{x-y} - \frac{1-3i}{x+y} = \frac{-7x+12i}{y^2-x^2}, x, y \in \mathbb{R}.$

Задание 6. Изобразить на комплексной плоскости С множество точек, определяемое следующими условиями:

$$\begin{cases} |z - 1| \le 1; \\ 0 \le \arg z \le \frac{\pi}{2}. \end{cases}$$

Задание 7. Доказать:

$$e^{2\pi ni}=1, n\in\mathbb{N}.$$

Вариант 23

Задание 1. Даны комплексные числа:

$$z_1 = -3 + 6i$$
; $z_2 = 8 - 2i$.

Вычислить:

1)
$$z_1 + z_2$$
;

3)
$$z_1 \cdot z_2$$
;
4) $\frac{z_1}{z_2}$.

2)
$$z_1 - z_2$$
;

4)
$$\frac{z_1}{z_2}$$

Задание 2. Выполнить действия над комплексными числами, результат представить в алгебраической форме:

$$\frac{1+2i}{i^{50}} + \frac{1+i}{1-i}$$

Задание 3. Даны комплексные числа:

$$z_1 = -9i$$
; $z_2 = 1 - i$; $z_3 = -\sqrt{3} - i$.

Изобразить эти числа на комплексной плоскости и представить их в тригонометрической и показательной формах.

Задание 4. Используя тригонометрическую форму комплексных чисел, полученную в задании 3, вычислить:

1)
$$(z_3)^{36}$$
;

2)
$$\sqrt[4]{z_2}$$
.

Задание 5. Решить уравнение:

1)
$$x^6 - 12x^4 + 20x^2 = 0, x \in \mathbb{C}$$
;

2)
$$|z| + z = 2 + i, z \in \mathbb{C}$$
.

Задание 6. Изобразить на комплексной плоскости С множество точек, определяемое следующим условием:

$$|z| = \left|z + \frac{3}{i}\right|.$$

Задание 7. Доказать:

$$Re \frac{z-1}{z+1} = 0 \Leftrightarrow |z| = 1, \ (z \neq -1).$$

Вариант 24

Задание 1. Даны комплексные числа:

$$z_1 = -1 - 5i$$
; $z_2 = 3 - 8i$.

Вычислить:

1)
$$z_1 + z_2$$
;

3)
$$z_1 \cdot z_2$$

2)
$$z_1 - z_2$$
;

3)
$$z_1 \cdot z_2$$
;
4) $\frac{z_1}{z_2}$.

Задание 2. Выполнить действия над комплексными числами, результат представить в алгебраической форме:

$$\frac{i^{17}}{(1-i)^2} + 2i^{79}.$$

Задание 3. Даны комплексные числа:

$$z_1 = 8i; \ z_2 = -3 + 3i; \ z_3 = \sqrt{2} - \sqrt{\frac{2}{3}}i.$$

Изобразить эти числа на комплексной плоскости и представить их в тригонометрической и показательной формах.

Задание 4. Используя тригонометрическую форму комплексных чисел, полученную в задании 3, вычислить:

1)
$$(z_3)^{17}$$
;

2)
$$\sqrt[3]{z_1}$$
.

Задание 5. Решить уравнение:

1)
$$x^3 + 4x^2 + 8x = 0, x \in \mathbb{C}$$
;

$$2) \, \overline{z} = -4z + 1, z \in \mathbb{C}.$$

Задание 6. Изобразить на комплексной плоскости С множество точек, определяемое следующими условиями:

$$\begin{cases} 1 \le |z + 2i| \le 3; \\ -2 \le \operatorname{Re} z \le \frac{5}{2}. \end{cases}$$

Задание 7. Доказать:

$$z + \overline{z} = 2Re z$$
; $z - \overline{z} = 2iIm z$.

Вариант 25

Задание 1. Даны комплексные числа:

$$z_1 = 2 - 7i$$
; $z_2 = -3 + 5i$.

Вычислить:

1)
$$z_1 + z_2$$
;

3)
$$z_1 \cdot z_2$$
;
4) $\frac{z_1}{z_2}$.

2)
$$z_1 - z_2$$
;

4)
$$\frac{z_1}{z_2}$$

Задание 2. Выполнить действия над комплексными числами, результат представить в алгебраической форме:

$$(1-2i)^3 - \frac{4i^9}{4-3i}.$$

Задание 3. Даны комплексные числа:

$$z_1 = -9i; \ z_2 = 1 - i; \ z_3 = -\frac{3\sqrt{3}}{2} - \frac{3}{2}i.$$

Изобразить эти числа на комплексной плоскости и представить их в тригонометрической и показательной формах.

Задание 4. Используя тригонометрическую форму комплексных чисел, полученную в задании 3, вычислить:

1)
$$(z_3)^{60}$$
;

2)
$$\sqrt[4]{z_2}$$
.

Задание 5. Решить уравнение:

1)
$$x^5 - 6x^4 + 11x^3 = 0, x \in \mathbb{C}$$
;

2)
$$\sqrt{x^2 - 2x + 8} + (x + 4)i = y(2 + i), x, y \in \mathbb{R}$$
.

Задание 6. Изобразить на комплексной плоскости С множество точек, определяемое следующими условиями:

$$\begin{cases} |z - 1 - i| < 1; \\ |\arg z| \le \frac{\pi}{4}. \end{cases}$$

Задание 7. Доказать:

$$\frac{\sqrt{1+x^2}+ix}{x-i\sqrt{1+x^2}}=i, x \in \mathbb{R}.$$

Вариант 26

Задание 1. Даны комплексные числа:

$$z_1 = -9 + 8i; \ z_2 = 2 - 4i.$$

Вычислить:

1)
$$z_1 + z_2$$
;

3)
$$z_1 \cdot z_2$$

2)
$$z_1 - z_2$$
;

3)
$$z_1 \cdot z_2$$
;
4) $\frac{z_1}{z_2}$.

Задание 2. Выполнить действия над комплексными числами, результат представить в алгебраической форме:

$$\sqrt{5} \cdot \left(\frac{1}{1+4i} + \frac{1}{4-i}\right) + \frac{1}{\sqrt{5} \cdot i^{36}}.$$

Задание 3. Даны комплексные числа:

$$z_1 = 4i; \ z_2 = 1 - i; \ z_3 = -1 - \sqrt{3}i.$$

Изобразить эти числа на комплексной плоскости и представить их в тригонометрической и показательной формах.

Задание 4. Используя тригонометрическую форму комплексных чисел, полученную в задании 3, вычислить:

1) $(z_2)^{76}$;

2)
$$\sqrt[4]{z_1}$$
.

Задание 5. Решить уравнение:

1)
$$x^4 + 18x^2 + 81 = 0, x \in \mathbb{C}$$
;

2)
$$z + 2i \cdot \overline{z} - 3 = 0, z \in \mathbb{C}$$
.

Задание 6. Изобразить на комплексной плоскости € множество точек, определяемое следующими условиями:

$$\begin{cases} |Re\ z| \le 2; \\ |\operatorname{Im} z| < 1. \end{cases}$$

Задание 7. Доказать:

$$\overline{z_1 - z_2} = \overline{z_1} - \overline{z_2}.$$

Вариант 27

Задание 1. Даны комплексные числа:

$$z_1 = 2 + 10i$$
; $z_2 = -5 - 6i$.

Вычислить:

1) $z_1 + z_2$;

3)
$$z_1 \cdot z_2$$
;

2)
$$z_1 - z_2$$
;

4)
$$\frac{z_1}{z_2}$$
.

Задание 2. Выполнить действия над комплексными числами, результат представить в алгебраической форме:

$$\left(\frac{i^{31}+2}{i^{38}-1}\right)^2.$$

Задание 3. Даны комплексные числа:

$$z_1 = 5i; \ z_2 = 2 - 2i; \ z_3 = -\sqrt{3} + i.$$

Изобразить эти числа на комплексной плоскости и представить их в тригонометрической и показательной формах.

Задание 4. Используя тригонометрическую форму комплексных чисел, полученную в задании 3, вычислить:

1)
$$(z_3)^{42}$$
;

2)
$$\sqrt[3]{z_2}$$
.

Задание 5. Решить уравнение:

1)
$$x^3 - 5x^2 + 12x = 0, x \in \mathbb{C}$$
;

2)
$$x - y + ixy = i, x, y \in \mathbb{R}$$
.

Задание 6. Изобразить на комплексной плоскости € множество точек, определяемое следующими условиями:

$$\begin{cases} |z+i| \le 2; \\ Re \ z > \sqrt{2}. \end{cases}$$

Задание 7. Доказать:

$$e^{2\pi ni} = 1, n \in \mathbb{N}.$$

Вариант 28

Задание 1. Даны комплексные числа:

$$z_1 = -5 + 7i$$
; $z_2 = 2 - 3i$.

Вычислить:

1)
$$z_1 + z_2$$
;

2)
$$z_1 + z_2$$
;

3)
$$z_1 \cdot z_2$$
;
4) $\frac{z_1}{z_2}$.

4)
$$\frac{z_1}{z_2}$$
.

Задание 2. Выполнить действия над комплексными числами, результат представить в алгебраической форме:

$$\frac{2-i}{1+i} + i^{125}.$$

Задание 3. Даны комплексные числа:

$$z_1=16i; \ z_2=3+3i; \ z_3=-1-\sqrt{3}i.$$

Изобразить эти числа на комплексной плоскости и представить их в тригонометрической и показательной формах.

Задание 4. Используя тригонометрическую форму комплексных чисел, полученную в задании 3, вычислить:

1)
$$(z_3)^{90}$$
;

2)
$$\sqrt[4]{z_1}$$
.

Задание 5. Решить уравнение:

1)
$$x^4 + 6x^2 + 9 = 0, x \in \mathbb{C}$$
;

2)
$$\frac{i}{x} + \frac{i}{y} + \frac{1}{6} = \frac{1}{x} - \frac{1}{y} + \frac{5i}{y}, x, y \in \mathbb{R}.$$

Задание 6. Изобразить на комплексной плоскости С множество точек, определяемое следующими условиями:

$$\begin{cases} |z + i| \le 1; \\ |z + 1| > 1. \end{cases}$$

Задание 7. Выразить $\sin 3\varphi$ через $\cos \varphi$ и $\sin \varphi$ с помощью формулы Муавра.

Вариант 29

Задание 1. Даны комплексные числа:

$$z_1 = 3 - 4i$$
; $z_2 = -6 + 7i$.

Вычислить:

1)
$$z_1 + z_2$$
;

3)
$$z_1 \cdot z_2$$
;

2)
$$z_1 - z_2$$
;

3)
$$z_1 \cdot z_2$$
;
4) $\frac{z_1}{z_2}$.

Задание 2. Выполнить действия над комплексными числами, результат представить в алгебраической форме:

$$\frac{2-i}{1+i}+i^{125}$$
.

Задание 3. Даны комплексные числа:

$$z_1 = 3i$$
; $z_2 = -5 + 5i$; $z_3 = -1 - \sqrt{3}i$.

Изобразить эти числа на комплексной плоскости и представить их в тригонометрической и показательной формах.

Задание 4. Используя тригонометрическую форму комплексных чисел, полученную в задании 3, вычислить:

1)
$$(z_3)^{30}$$
;

2)
$$\sqrt[3]{z_1}$$
.

Задание 5. Решить уравнение:

1)
$$x^5 + 6x^4 + 5x^3 = 0, x \in \mathbb{C}$$
;

2)
$$(-x + 3yi) + (\frac{3}{2}y + 2xi) = 4 + 8i, x, y \in \mathbb{R}.$$

Задание 6. Изобразить на комплексной плоскости С множество точек, определяемое следующим условием:

$$|z - i| = |z + 2|.$$

Задание 7. Доказать:

$$Re \frac{z-1}{z+1} = 0 \Leftrightarrow |z| = 1, \ (z \neq -1).$$

Вариант 30

Задание 1. Даны комплексные числа:

$$z_1 = -8 + 5i$$
; $z_2 = 7 - 2i$.

Вычислить:

1) $z_1 + z_2$;

3) $z_1 \cdot z_2$; 4) $\frac{z_1}{z_2}$.

2) $z_1 - z_2$;

Задание 2. Выполнить действия над комплексными числами, результат представить в алгебраической форме:

$$\left(\frac{1+i^3}{1-i}\right)^{10}+i^{10}+\frac{1}{1-i}.$$

Задание 3. Даны комплексные числа:

$$z_1=-i; \ z_2=-2+2i; \ z_3=1-\sqrt{3}i.$$

Изобразить эти числа на комплексной плоскости и представить их в тригонометрической и показательной формах.

Задание 4. Используя тригонометрическую форму комплексных чисел, полученную в задании 3, вычислить:

1)
$$(z_3)^{60}$$
;

2) $\sqrt[3]{z_1}$.

Задание 5. Решить уравнение:

1)
$$x^3 - 6x^4 + 11x^3 = 0, x \in \mathbb{C};$$

2) $\frac{2+5i}{x-y} - \frac{1-3i}{x+y} = \frac{-7x+12i}{y^2-x^2}, x, y \in \mathbb{R}.$

Задание 6. Изобразить на комплексной плоскости С множество точек, определяемое следующим условием:

$$\left|\frac{1}{z-i}\right| \ge 1.$$

Задание 7. Доказать:

$$\frac{\sqrt{1+x^2}+ix}{x-i\sqrt{1+x^2}}=i, x\in\mathbb{R}.$$

Раздел 4. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Вариант 1

Задание 1. Найти общий интеграл дифференциального уравнения с разделяющимися переменными:

$$x\sqrt{4 + y^2}dx + y\sqrt{1 + x^2}dy = 0.$$

Задание 2. Найти общий интеграл однородного дифференциального уравнения первого порядка:

$$y' = \frac{y^2}{x^2} + 8\frac{y}{x} + 12.$$

Задание 3. Найти решение задачи Коши линейного дифференциального уравнения первого порядка:

$$y' - \frac{y}{x} = -2\frac{\ln x}{x}, \quad y(1) = 1.$$

Задание 4. Найти решение задачи Коши уравнения Бернулли:

$$y' + 2xy = 2x^3y^3$$
, $y(0) = \sqrt{2}$.

Задание 5. Найти общий интеграл дифференциального уравнения в полных дифференциалах:

$$\frac{y}{x^2}\cos\frac{y}{x}dx - \left(\frac{1}{x}\cos\frac{y}{x} + 2y\right)dy = 0.$$

Задание 6. Найти общее решение дифференциального уравнения:

$$xy''' + y'' + x = 0.$$

Задание 7. Найти решение задачи Коши дифференциального уравнения:

$$y'' = 2y^3$$
, $y(-1) = 1$, $y'(-1) = 1$.

Задание 8. Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y'' - 5y' + 6y = 0$$
;

2)
$$y'' + 6y' + 9y = 0$$
;

3)
$$y'' + 4y' + 29y = 0$$
;

4)
$$y''' - 4y' = 0$$
;

5)
$$y^{IV} - 8y''' + 16y'' = 0$$
.

Задание 9. Найти общее решение (для уравнения 4 решить задачу Коши) линейного неоднородного дифференциального уравнения с постоянными коэффициентами:

1)
$$v''' - 13v'' + 12v' = x - 1$$

1)
$$y''' - 13y'' + 12y' = x - 1;$$

2) $y''' - 5y'' + 7y' - 3y = (20 - 16x)e^{-x};$

3)
$$y'' + 2y' + 5y = -2\sin x$$
;

4)
$$y'' + 16y' = \frac{16}{\sin 4x}$$
, $y\left(\frac{\pi}{8}\right) = 3$, $y'\left(\frac{\pi}{8}\right) = 2\pi$.

Задание 10. Решить систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = x + 5y, \\ \frac{dy}{dt} = 7x + 3y. \end{cases}$$

Вариант 2

Задание 1. Найти общий интеграл дифференциального уравнения с разделяющимися переменными:

$$6xdx - 6ydy = 2x^2ydy - 3xy^2dx.$$

Задание 2. Найти общий интеграл однородного дифференциального уравнения первого порядка:

$$xy' = \frac{3y^3 + 8yx^2}{2y^2 + 4x^2}.$$

Задание 3. Найти решение задачи Коши линейного дифференциального уравнения первого порядка:

$$y' - \frac{y}{x} = x^2$$
, $y(1) = 0$.

Задание 4. Найти решение задачи Коши уравнения Бернулли:

$$y' + xy = y^2 e^{-x} (1 + x), \quad y(0) = 1.$$

Задание 5. Найти общий интеграл дифференциального уравнения в полных дифференциалах:

$$e^{y}dx + (\cos y + xe^{y})dy = 0.$$

Задание 6. Найти общее решение дифференциального уравнения:

$$(1 + \sin x)y''' = \cos x \cdot y''.$$

Задание 7. Найти решение задачи Коши дифференциального уравнения:

$$y'' = 8y^3$$
, $y(0) = 1$, $y'(0) = 2$.

Задание 8. Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y'' - 8y' + 7y = 0$$
;

2)
$$y'' - 4y' + 4y = 0$$
;

3)
$$y'' - 4y' + 13y = 0$$
;

4)
$$y''' - 16y' = 0$$
;

5)
$$y^{IV} + 5y'' - 36y = 0$$
.

Задание 9. Найти общее решение (для уравнения 4 решить задачу Коши) линейного неоднородного дифференциального уравнения с постоянными коэффициентами:

- 1) $y^{IV} + y''' = 12x + 6$; 2) $y''' 7y'' + 15y' 9y = (8x 12)e^x$;
- 3) $y'' + 6y' + 13y = e^{-3x} \cos 5x$;

4)
$$y'' + 9y = \frac{9}{\cos 3x}$$
, $y(0) = 1, y'(0) = 0$.

Задание 10. Решить систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = x + 4y, \\ \frac{dy}{dt} = x + y. \end{cases}$$

Вариант 3

Задание 1. Найти общий интеграл дифференциального уравнения с разделяющимися переменными:

$$\sqrt{3+y^2}dx - ydy = x^2ydy.$$

Задание 2. Найти общий интеграл однородного дифференциального уравнения первого порядка:

$$xy' = \frac{3y^3 + 14yx^2}{2y^2 + 7x^2}.$$

Задание 3. Найти решение задачи Коши линейного дифференциального уравнения первого порядка:

$$y' - y \cos x = -\sin 2x$$
, $y(0) = 3$.

Задание 4. Найти решение задачи Коши уравнения Бернулли:

$$y' + 4x^3y = 4y^2e^{4x}(1-x^3), y(0) = -1.$$

Задание 5. Найти общий интеграл дифференциального уравнения в полных дифференциалах:

$$\left(3x^2 + \frac{2}{y}\cos\frac{2x}{y}\right)dx - \frac{2x}{y^2}\cos\frac{2x}{y}dy = 0.$$

Задание 6. Найти общее решение дифференциального уравнения:

$$xy^{\prime\prime\prime} + y^{\prime\prime} = 1.$$

Задание 7. Найти решение задачи Коши дифференциального уравнения:

$$4y^2y'' = y^4 - 1$$
, $y(0) = \sqrt{2}$, $y'(0) = \frac{1}{2\sqrt{2}}$.

Задание 8. Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y'' + y' - 6y = 0$$
;

2)
$$y'' - 8y' + 16y = 0$$
;
4) $y''' + y'' = 0$;

3)
$$y'' + 6y' + 10y = 0$$
;

4)
$$v''' + v'' = 0$$

5)
$$y^{IV} - 3y'' - 4y = 0$$
.

Задание 9. Найти общее решение (для уравнения 4 решить задачу Коши) линейного неоднородного дифференциального уравнения с постоянными коэффициентами:

- 1) $y''' 4y'' = 32 384x^2$; 2) $y''' y'' 4y' + 4y = (7 6x)e^x$;
- 3) $y'' + y' = 2\cos 5x + 3\sin 5x$;

4)
$$y'' + y = 4 \operatorname{ctg} x$$
, $y\left(\frac{\pi}{2}\right) = 4$, $y'\left(\frac{\pi}{2}\right) = 4$.

Задание 10. Решить систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = -x + 8y, \\ \frac{dy}{dt} = x + y. \end{cases}$$

Вариант 4

Задание 1. Найти общий интеграл дифференциального уравнения с разделяющимися переменными:

$$4xdx - 3ydy = 3x^2ydy - 2xy^2dx.$$

Задание 2. Найти общий интеграл однородного дифференциального уравнения первого порядка:

$$y' = \frac{x^2 + xy - 3y^2}{x^2 - 4xy}.$$

Задание 3. Найти решение задачи Коши линейного дифференциального уравнения первого порядка:

$$y' - \frac{2x - 5}{x^2}y = 5$$
, $y(2) = 4$.

Задание 4. Найти решение задачи Коши уравнения Бернулли:

$$2y' + y \cos x = y^{-1} \cos x (1 + \sin x), \quad y(0) = 1.$$

Задание 5. Найти общий интеграл дифференциального уравнения в полных дифференциалах:

$$\left(xy^{2} + \frac{x}{y^{2}}\right)dx + \left(x^{2}y - \frac{x^{2}}{y^{3}}\right)dy = 0.$$

Задание 6. Найти общее решение дифференциального уравнения:

$$xy''' - y'' + \frac{1}{x} = 0.$$

Задание 7. Найти решение задачи Коши дифференциального уравнения:

$$y''y^3 + 4 = 0$$
, $y(0) = -1$, $y'(0) = -2$.

Задание 8. Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y'' - 4y' + 3y = 0$$
;

2)
$$y'' + 4y' + 4y = 0$$

3)
$$y'' + 4y' + 29y = 0$$
;

2)
$$y'' + 4y' + 4y = 0$$
;
4) $y''' - 10y'' + 25y' = 0$;

5)
$$y^{IV} + 49y'' = 0$$
.

Задание 9. Найти общее решение (для уравнения 4 решить задачу Коши) линейного неоднородного дифференциального уравнения с постоянными коэффициентами:

1)
$$v^{IV} + v''' = x$$
:

2)
$$y''' - y'' - 2y' = (6x - 11)e^{-x}$$
;

3)
$$y'' + 2y' + 5y = 10 \cos x$$
;

4)
$$y'' + 4y = 4 \operatorname{ctg} 2x$$
, $y\left(\frac{\pi}{4}\right) = 3$, $y'\left(\frac{\pi}{4}\right) = 2$.

Задание 10. Решить систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = -x - 5y, \\ \frac{dy}{dt} = x + y. \end{cases}$$

Вариант 5

Задание 1. Найти общий интеграл дифференциального уравнения с разделяющимися переменными:

$$(1+e^x)y'=ye^x.$$

Задание 2. Найти общий интеграл однородного дифференциального уравнения первого порядка:

$$y' = \frac{y^2}{x^2} + 4\frac{y}{x} + 2.$$

Задание 3. Найти решение задачи Коши линейного дифференциального уравнения первого порядка:

$$y' + \frac{y}{x} = \sin x$$
, $y(\pi) = \frac{1}{\pi}$.

Задание 4. Найти решение задачи Коши уравнения Бернулли:

$$8xy' - 12y = -y^3(3 + 5x^2), y(1) = \sqrt{2}.$$

Задание 5. Найти общий интеграл дифференциального уравнения в полных дифференциалах:

$$\left(2x - 1 - \frac{y}{x^2}\right)dx - \left(2y - \frac{1}{x}\right)dy = 0.$$

Задание 6. Найти общее решение дифференциального уравнения:

$$y''' \operatorname{tg} 5x = 5y''.$$

Задание 7. Найти решение задачи Коши дифференциального уравнения:

$$y'' = 18y^3$$
, $y(1) = 1, y'(1) = 3$.

Задание 8. Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y'' - 9y' + 8y = 0$$
;

2)
$$y'' - 2y' + y = 0$$
;

3)
$$y'' - 4y' + 13y = 0$$
;

4)
$$y''' - 144y' = 0$$
;

5)
$$y^{IV} + 5y'' - 36y = 0$$
.

Задание 9. Найти общее решение (для уравнения 4 решить задачу Коши) линейного неоднородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y''' + y'' = 49 - 24x^2$$
;

2)
$$y''' - 3y' - 2y = -4xe^x$$
;

3)
$$y'' + 6y' + 13y = e^{-3x} \cos x$$
;

4)
$$y'' - 3y' + 2y = \frac{1}{1 + e^{-x}}$$
, $y(0) = 1 + 2 \ln 2$, $y'(0) = 3 \ln 2$.

Задание 10. Решить систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = 5x + 3y, \\ \frac{dy}{dt} = -3x - y. \end{cases}$$

Вариант 6

Задание 1. Найти общий интеграл дифференциального уравнения с разделяющимися переменными:

$$\sqrt{4 - x^2}y' + xy^2 + x = 0.$$

Задание 2. Найти общий интеграл однородного дифференциального уравнения первого порядка:

$$xy' = \frac{3y^3 + 12yx^2}{2y^2 + 6x^2}.$$

Задание 3. Найти решение задачи Коши линейного дифференциального уравнения первого порядка:

$$y' - y \operatorname{ctg} x = 2x \sin x$$
, $y\left(\frac{\pi}{2}\right) = 0$.

Задание 4. Найти решение задачи Коши уравнения Бернулли:

$$xy' + y = xy^2$$
, $y(1) = 1$.

Задание 5. Найти общий интеграл дифференциального уравнения в полных дифференциалах:

$$(y^3 + \cos x)dx + (3xy^2 + e^y)dy = 0.$$

Задание 6. Найти общее решение дифференциального уравнения:

$$-xy''' + 2y'' = \frac{2}{x^2}.$$

Задание 7. Найти решение задачи Коши дифференциального уравнения:

$$y''y^3 + 36 = 0$$
, $y(0) = 3$, $y'(0) = 2$.

Задание 8. Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y'' + 6y' + 10y = 0$$
;

2)
$$y'' + 28y' + 196y = 0$$
;

3)
$$y'' - 4y' + 8y = 0$$
;

4)
$$y''' - 9y' = 0$$
;

5)
$$y^{IV} - 3y'' - 4y = 0$$
.

Задание 9. Найти общее решение (для уравнения 4 решить задачу Коши) линейного неоднородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y^{IV} - 6y''' + 9y'' = 3x - 1$$
;

2)
$$y''' - 4y'' + 5y' - 2y = (18 - 12x)e^{-x}$$
;

3)
$$y'' + 2y' = 6e^x(\sin x + \cos x)$$
;

4)
$$y'' + 4y = 8 \operatorname{ctg} 2x$$
, $y\left(\frac{\pi}{4}\right) = 5$, $y'\left(\frac{\pi}{4}\right) = 4$.

Задание 10. Решить систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = x - y, \\ \frac{dy}{dt} = x + 3y. \end{cases}$$

Вариант 7

Задание 1. Найти общий интеграл дифференциального уравнения с разделяющимися переменными:

$$2xdx - ydy = x^2ydy - xy^2dx.$$

Задание 2. Найти общий интеграл однородного дифференциального уравнения первого порядка:

$$xy' = 4\sqrt{x^2 + y^2} + y.$$

Задание 3. Найти решение задачи Коши линейного дифференциального уравнения первого порядка:

$$y' + \frac{3y}{x} = \frac{2}{x^3}$$
, $y(1) = 1$.

Задание 4. Найти решение задачи Коши уравнения Бернулли:

$$y' - y = xy^2$$
, $y(0) = 1$.

Задание 5. Найти общий интеграл дифференциального уравнения в полных дифференциалах:

$$2(3xy^2 + 2x^3)dx + 3(2x^2y + y^2)dy = 0.$$

Задание 6. Найти общее решение дифференциального уравнения:

$$y'''x\ln x = y''.$$

Задание 7. Найти решение задачи Коши дифференциального уравнения:

$$y'' = 128y^3$$
, $y(0) = 1, y'(0) = 8$.

Задание 8. Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y'' + 6y' + 5y = 0$$
;

2)
$$y'' - 24y' + 144y = 0$$
;

3)
$$y'' - 14y' + 49y = 0$$
;

4)
$$v^{IV} - 169v'' = 0$$
;

5)
$$y^{IV} + 17y'' + 16y = 0$$
.

Задание 9. Найти общее решение (для уравнения 4 решить задачу Коши) линейного неоднородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y^{IV} + 2y''' + y'' = x^2 + x + 1$$
;

2)
$$y''' - y'' - y' + y = (3x + 7)e^{2x}$$
;

3)
$$y'' + 2y' + 5y = -\cos x$$
;

4)
$$y'' + y = \frac{1}{\sin x}$$
, $y(\frac{\pi}{2}) = 1$, $y'(\frac{\pi}{2}) = \frac{\pi}{2}$.

Задание 10. Решить систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = 4x - 3y, \\ \frac{dy}{dt} = 2x - 3y. \end{cases}$$

Вариант 8

Задание 1. Найти общий интеграл дифференциального уравнения с разделяющимися переменными:

$$x\sqrt{5 + y^2}dx + y\sqrt{4 + x^2}dy = 0.$$

Задание 2. Найти общий интеграл однородного дифференциального уравнения первого порядка:

$$y' = \frac{x + 2y}{2x - y}.$$

Задание 3. Найти решение задачи Коши линейного дифференциального уравнения первого порядка:

$$y' + \frac{y}{x} = 3x$$
, $y(1) = 1$.

Задание 4. Найти решение задачи Коши уравнения Бернулли:

$$3(xy' + y) = xy^2$$
, $y(1) = 3$.

Задание 5. Найти общий интеграл дифференциального уравнения в полных дифференциалах:

$$\frac{y}{x^2}dx - \frac{xy+1}{x}dy = 0.$$

Задание 6. Найти общее решение дифференциального уравнения:

$$y''' \text{ th } 7x = 7y''.$$

Задание 7. Найти решение задачи Коши дифференциального уравнения:

$$y'' + 18 \sin y \cos^3 y$$
, $y(0) = 0$, $y'(0) = 3$.

Задание 8. Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

1) y'' - 4y' - 21y = 0:

2) y'' + 16y' + 64y = 0;

3) y'' - 8y' + 20y = 0;

4) v''' - 9v' = 0:

5) $y^{IV} - 8y^{\prime\prime\prime} + 16y^{\prime\prime} = 0$.

Задание 9. Найти общее решение (для уравнения 4 решить задачу Коши) линейного неоднородного дифференциального уравнения с постоянными коэффициентами:

- 1) $y''' + y'' = 15x^2 1$;
- 2) $y''' 4y'' + 3y' = -4xe^x$;

2)
$$y'' - 4y' + 4y = e^{2x} \sin 5x;$$

4) $y'' - 6y' + 8y = \frac{4}{1 + e^{-2x}}, \quad y(0) = 1 + 2 \ln 2, y'(0) = 6 \ln 2.$

Задание 10. Решить систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = -x + y, \\ \frac{dy}{dt} = -2x - 5y. \end{cases}$$

Вариант 9

Задание 1. Найти общий интеграл дифференциального уравнения с разделяющимися переменными:

$$y(4 + e^x)dy - e^x dx = 0.$$

Задание 2. Найти общий интеграл однородного дифференциального уравнения первого порядка:

$$xy' = \frac{3y^3 + 2yx^2}{2y^2 + x^2}.$$

Задание 3. Найти решение задачи Коши линейного дифференциального уравнения первого порядка:

$$y' - 4xy = -4x^3$$
, $y(0) = -\frac{1}{2}$.

Задание 4. Найти решение задачи Коши уравнения Бернулли:

$$y' + xy = y^2 e^x (x - 1),$$
 $y(0) = 1.$

Задание 5. Найти общий интеграл дифференциального уравнения в полных дифференциалах:

$$\frac{dx}{y} - \frac{x + y^2}{y^2} dy = 0.$$

Задание 6. Найти общее решение дифференциального уравнения:

$$(1+x^2)y'' + 2xy' = x^3.$$

Задание 7. Найти решение задачи Коши дифференциального уравнения:

$$y^3y'' = 4(y^4 - 1),$$
 $y(0) = \sqrt{2}, y'(0) = \sqrt{2}.$

Задание 8. Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y'' - 2y' - 8y = 0$$
;

2)
$$y'' - 18y' + 81y = 0$$
;
4) $y''' - 121y' = 0$;

3)
$$y'' - 4y' + 5y = 0$$
;

4)
$$v''' - 121v' = 0$$
:

5)
$$y^{IV} + 3y'' = 0$$
.

Задание 9. Найти общее решение (для уравнения 4 решить задачу Коши) линейного неоднородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y''' + 3y'' + 2y' = 1 - x^2$$
;

2)
$$y''' - 5y'' + 8y' - 4y = (2x - 5)e^x$$
;

3)
$$y'' + 2y' = 10e^x(\sin x + \cos x)$$
;

4)
$$y'' + y = \frac{1}{\cos x}$$
, $y(0) = 1, y'(0) = 0$.

Задание 10. Решить систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = 4x - y, \\ \frac{dy}{dt} = x + 2y. \end{cases}$$

Вариант 10

Задание 1. Найти общий интеграл дифференциального уравнения с разделяющимися переменными:

$$\sqrt{3 + y^2} + \sqrt{1 - x^2} y y' = 0.$$

Задание 2. Найти общий интеграл однородного дифференциального уравнения первого порядка:

$$y' = \frac{x^2 + xy - y^2}{x^2 - 2xy}.$$

Задание 3. Найти решение задачи Коши линейного дифференциального уравнения первого порядка:

$$y' - y\cos x = \sin 2x, \qquad y(0) = -1.$$

Задание 4. Найти решение задачи Коши уравнения Бернулли:

$$y' - y \operatorname{tg} x = -(2/3)y^4 \sin x$$
, $y(0) = 1$.

Задание 5. Найти общий интеграл дифференциального уравнения в полных дифференциалах:

$$\left(\frac{x}{\sqrt{x^2+y^2}}+y\right)dx+\left(x+\frac{y}{\sqrt{x^2+y^2}}\right)dy=0.$$

Задание 6. Найти общее решение дифференциального уравнения:

$$2xy^{\prime\prime\prime}=y^{\prime\prime}.$$

Задание 7. Найти решение задачи Коши дифференциального уравнения:

$$4y^3y'' = 16y^4 - 1, y(0) = \frac{\sqrt{2}}{2}, y'(0) = \frac{1}{\sqrt{2}}$$

Задание 8. Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y'' - 5y' - 14y = 0$$
;

2)
$$y'' + 14y' + 49y = 0$$
;
4) $y''' - 9y' = 0$;

3)
$$y'' - 7y' + 10y = 0$$
;

4)
$$v''' - 9v' = 0$$
:

5)
$$y^{IV} - 4y'' + 4y = 0$$
.

Задание 9. Найти общее решение (для уравнения 4 решить задачу Коши) линейного неоднородного дифференциального уравнения с постоянными коэффициентами:

- 1) 7y''' y'' = 12x;
- 2) $y''' + y'' 2y' = (6x + 5)e^x$;
- 3) $y'' + 2y' = 4e^x(\sin x + \cos x)$;

4)
$$y'' - 6y' + 8y = \frac{4}{2 + e^{-2x}}$$
, $y(0) = 1 + 3\ln 3$, $y'(0) = 10\ln 3$.

Задание 10. Решить систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = -x + 8y, \\ \frac{dy}{dt} = x + y. \end{cases}$$

Вариант 11

Задание 1. Найти общий интеграл дифференциального уравнения с разделяющимися переменными:

$$(e^x + 8)dy - ye^x dx = 0.$$

Задание 2. Найти общий интеграл однородного дифференциального уравнения первого порядка:

$$xy' = 4\sqrt{2x^2 + y^2} + y.$$

Задание 3. Найти решение задачи Коши линейного дифференциального уравнения первого порядка:

$$y' + \frac{y}{x} = \frac{x+1}{x}e^x$$
, $y(1) = e$.

Задание 4. Найти решение задачи Коши уравнения Бернулли:

$$xy' + y = 2y^2 \ln x$$
, $y(1) = \frac{1}{2}$.

Задание 5. Найти общий интеграл дифференциального уравнения в полных дифференциалах:

$$(5xy^2 - x^3)dx + (5x^2y - y)dy = 0.$$

Задание 6. Найти общее решение дифференциального уравнения:

th
$$x \cdot y^{IV} = y''$$
.

Задание 7. Найти решение задачи Коши дифференциального уравнения:

$$y'' = 72y^3$$
, $y(2) = 1, y'(2) = 6$.

Задание 8. Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y'' - 8y' + 12y = 0$$
;

2)
$$y'' + 10y' + 25y = 0$$
;
4) $y^{IV} + 4y'' = 0$;

3)
$$y'' + 2y' + 5y = 0$$
;

4)
$$v^{IV} + 4v'' = 0$$
:

5)
$$y^{IV} - 2y'' + y = 0$$
.

Задание 9. Найти общее решение (для уравнения 4 решить задачу Коши) линейного неоднородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y^{IV} - 3y''' + 3y'' - y' = x - 3$$
;

2)
$$y''' + 5y'' + 7y' + 3y = (16x + 20)e^x$$
;

3)
$$y'' - 4y' + 4y = e^{2x} \sin 6x$$
;

4)
$$y'' + \frac{y}{4} = \frac{1}{4} \operatorname{ctg} \frac{x}{2}$$
, $y(\pi) = 2$, $y'(\pi) = \frac{1}{2}$.

Задание 10. Решить систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = 4x - 3y, \\ \frac{dy}{dt} = 2x - 3y. \end{cases}$$

Вариант 12

Задание 1. Найти общий интеграл дифференциального уравнения с разделяющимися переменными:

$$20xdx - 3ydy = 3x^2ydy - 5xy^2dx.$$

Задание 2. Найти общий интеграл однородного дифференциального уравнения первого порядка:

$$xy' = \frac{3y^3 + 6yx^2}{2y^2 + 3x^2}.$$

Задание 3. Найти решение задачи Коши линейного дифференциального уравнения первого порядка:

$$y' + y \cos x = \frac{1}{2} \sin 2x$$
, $y(0) = 0$.

Задание 4. Найти решение задачи Коши уравнения Бернулли:

$$y' + 4x^3y = 4y^2e^{-4x}(1+x^3), y(0) = 1.$$

Задание 5. Найти общий интеграл дифференциального уравнения в полных дифференциалах:

$$\left(\frac{y}{x^2 + y^2} + e^x\right) dx - \frac{xdy}{x^2 + y^2} = 0.$$

Задание 6. Найти общее решение дифференциального уравнения: $y'' + \frac{2x}{x^2 + 1}y' = 2x.$

$$y'' + \frac{2x}{x^2 + 1}y' = 2x.$$

Задание 7. Найти решение задачи Коши дифференциального уравнения:

$$y'' + 2\sin y \cos^3 y = 0$$
, $y(0) = 0, y'(0) = 1$.

Задание 8. Найти общее решение линейного однородного дифференциального vравнения с постоянными коэффициентами:

1) y'' - 2y' - 15y = 0;

2) y'' + 12y' + 36y = 0;

3) y'' + 2y' + 10y = 0;

4) v''' + 25v' = 0:

5) $v^{IV} - 5v'' + 4v = 0$.

Задание 9. Найти общее решение (для уравнения 4 решить задачу Коши) линейного неоднородного дифференциального уравнения с постоянными коэффициентами:

- 1) $y^{IV} + 2y''' + y'' = 4x^2$;
- 2) $y''' + 6y'' + 9y' = (16x + 24)e^x$;

3)
$$y'' + 6y' + 13y = e^{-3x} \cos 8x$$
;
4) $y'' + 3y' + 2y = \frac{e^{-x}}{2 + e^{x}}$, $y(0) = 0, y'(0) = 0$.

Задание 10. Решить систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = 2x + 3y, \\ \frac{dy}{dt} = 6x - y. \end{cases}$$

Вариант 13

Задание 1. Найти общий интеграл дифференциального уравнения с разделяющимися переменными:

$$x\sqrt{3 + y^2}dx + y\sqrt{2 + x^2}dy = 0.$$

Задание 2. Найти общий интеграл однородного дифференциального уравнения первого порядка:

$$y' = \frac{x^2 + xy - 5y^2}{x^2 - 6xy}.$$

Задание 3. Найти решение задачи Коши линейного дифференциального уравнения первого порядка:

$$y' - \frac{y}{x+1} = e^x(x+1), \quad y(0) = 1.$$

Задание 4. Найти решение задачи Коши уравнения Бернулли:

$$2xy' - 3y = -y^3(12 + 20x^2), y(1) = \frac{1}{2\sqrt{2}}.$$

Задание 5. Найти общий интеграл дифференциального уравнения в полных дифференциалах:

$$\left(xe^x + \frac{y}{x^2}\right)dx - \frac{1}{x}dy = 0.$$

Задание 6. Найти общее решение дифференциального уравнения:

$$x^2y'' + xy' = 1.$$

Задание 7. Найти решение задачи Коши дифференциального уравнения:

$$y''y^3 + 16 = 0$$
, $y(1) = 2$, $y'(1) = 2$.

Задание 8. Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y'' - 7y' + 12y = 0$$
;

2)
$$y'' - 16y' + 64y = 0$$
;

3)
$$y'' - 6y' + 10y = 0$$
;

2)
$$y'' - 16y' + 64y = 0$$
;
4) $y''' - 14y'' + 49y' = 0$;

5)
$$y^{IV} - 15y'' - 16y = 0$$
.

Задание 9. Найти общее решение (для уравнения 4 решить задачу Коши) линейного неоднородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y^{IV} - y''' = 5(x+2)^2$$
;

2)
$$y''' + y'' - y' - y = (8x + 4)e^x$$
;

3)
$$y'' + 2y' = -2e^x(\sin x + \cos x)$$
;

4)
$$y'' - 3y' = \frac{9e^{-3x}}{3 + e^{-3x}}, \quad y(0) = 4\ln 4, y'(0) = 3(3\ln 4 - 1).$$

Задание 10. Решить систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = 8x + 2y, \\ \frac{dy}{dt} = -3x + 15y. \end{cases}$$

Вариант 14

Задание 1. Найти общий интеграл дифференциального уравнения с разделяющимися переменными:

$$6xdx - 2ydy = 2x^2ydy - 3xy^2dx.$$

Задание 2. Найти общий интеграл однородного дифференциального уравнения первого порядка:

$$xy' = \frac{3y^3 + 10yx^2}{2y^2 + 5x^2}.$$

Задание 3. Найти решение задачи Коши линейного дифференциального уравнения первого порядка:

$$y' - 3x^2y = \frac{x^2(1+x^3)}{3}, \quad y(0) = 0.$$

Задание 4. Найти решение задачи Коши уравнения Бернулли:

$$2(xy' + y) = xy^2$$
, $y(1) = 2$.

Задание 5. Найти общий интеграл дифференциального уравнения в полных дифференциалах:

$$(x^2 - 4xy - 2y^2)dx + (y^2 - 4xy - 2x^2)dy = 0.$$

Задание 6. Найти общее решение дифференциального уравнения:

$$xy^{\prime\prime\prime}+2y^{\prime\prime}=0.$$

Задание 7. Найти решение задачи Коши дифференциального уравнения:

$$y'' = 2\sin^3 y \cos y$$
, $y(1) = \frac{\pi}{2}$, $y'(1) = 1$.

Задание 8. Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y'' + 3y' - 10y = 0$$
;

2)
$$y'' - 10y' + 25y = 0$$
;

3)
$$y'' + 4y' + 13y = 0$$
;

4)
$$y^{IV} + 16y'' = 0$$
;

5)
$$y^{IV} - 8y'' - 9y = 0$$
.

Задание 9. Найти общее решение (для уравнения 4 решить задачу Коши) линейного неоднородного дифференциального уравнения с постоянными коэффициентами:

1)
$$3y^{IV} + y''' = 6x - 1$$
;

2)
$$y''' - 6y'' + 9y' = 4xe^x$$
;

3)
$$y'' + 2y' + 5y = -\sin 2x$$

3)
$$y'' + 2y' + 5y = -\sin 2x$$
;
4) $y'' + 3y' = \frac{9e^{3x}}{1 + e^{3x}}$, $y(0) = 4\ln 4$, $y'(0) = 3(1 - \ln 2)$.

Задание 10. Решить систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = x + 5y, \\ \frac{dy}{dt} = 7x + 3y. \end{cases}$$

Вариант 15

Задание 1. Найти общий интеграл дифференциального уравнения с разделяющимися переменными:

$$\sqrt{5 + y^2} + y'y\sqrt{1 - x^2} = 0.$$

Задание 2. Найти общий интеграл однородного дифференциального уравнения первого порядка:

$$y' = \frac{x+y}{x-y}.$$

Задание 3. Найти решение задачи Коши линейного дифференциального уравнения первого порядка:

$$y' - \frac{y}{x} = -\frac{2}{x^2}$$
, $y(1) = 1$.

Задание 4. Найти решение задачи Коши уравнения Бернулли:

$$4y' + x^3y = y^2e^{-2x}(8+x^3), y(0) = 1.$$

Задание 5. Найти общий интеграл дифференциального уравнения в полных дифференциалах:

$$3x^2e^y dx + (x^3 e^y - 1)dy = 0.$$

Задание 6. Найти общее решение дифференциального уравнения:

$$y''' \operatorname{tg} x = y'' + 1.$$

Задание 7. Найти решение задачи Коши дифференциального уравнения:

$$y'' = 50y^3$$
, $y(3) = 1, y'(3) = 5$.

Задание 8. Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y'' + 9y' + 14y = 0$$
;

2)
$$y'' + 6y' + 9y = 0$$
;

3)
$$v'' + 4v' + 29v = 0$$
:

4)
$$v^{IV} + 9v'' = 0$$
:

5)
$$y^{IV} + 3y'' - 4y = 0$$
.

Задание 9. Найти общее решение (для уравнения 4 решить задачу Коши) линейного неоднородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y''' - y'' = 6x^2 + 3x$$
;

2)
$$y''' + 2y'' - 3y' = (8x + 6)e^x$$
;

3)
$$y'' - 4y' + 8y = e^x(2\sin x - \cos x)$$
;

4)
$$y'' + y = 2 \operatorname{ctg} x$$
, $y\left(\frac{\pi}{2}\right) = 1$, $y'\left(\frac{\pi}{2}\right) = 2$.

Задание 10. Решить систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = x + 3y, \\ \frac{dy}{dt} = 3x + y. \end{cases}$$

Вариант 16

Задание 1. Найти общий интеграл дифференциального уравнения с разделяющимися переменными:

$$(3 + e^x)yy' = e^x.$$

Задание 2. Найти общий интеграл однородного дифференциального уравнения первого порядка:

$$2y' = \frac{y^2}{x^2} + 8\frac{y}{x} + 8.$$

Задание 3. Найти решение задачи Коши линейного дифференциального уравнения первого порядка:

$$y' - \frac{y}{x} = -\frac{\ln x}{x}, \quad y(1) = 1.$$

Задание 4. Найти решение задачи Коши уравнения Бернулли:

$$2y' + 3y\cos x = y^{-1}e^{2x}(2+3\cos x), \quad y(0) = 1.$$

Задание 5. Найти общий интеграл дифференциального уравнения в полных дифференциалах:

$$\frac{1 + xy}{x^2 y} dx + \frac{1 - xy}{xy^2} dy = 0.$$

Задание 6. Найти общее решение дифференциального уравнения:

$$\operatorname{tg} x \cdot y'' - y' + \frac{1}{\sin x} = 0.$$

Задание 7. Найти решение задачи Коши дифференциального уравнения:

$$y''y^3 + 25 = 0$$
, $y(2) = -5$, $y'(2) = -1$.

Задание 8. Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y'' + y' - 6y = 0$$
;

2)
$$y'' - 8y' + 16y = 0$$
;
4) $y''' + y'' = 0$;

3)
$$y'' + 6y' + 10y = 0$$
;

4)
$$y''' + y'' = 0$$

5)
$$y^{IV} - 3y'' - 4y = 0$$
.

Задание 9. Найти общее решение (для уравнения 4 решить задачу Коши) линейного неоднородного дифференциального уравнения с постоянными коэффициентами:

1)
$$v''' - v'' = 4x^2 - 3x + 2$$
:

2)
$$y''' - 3y'' - y' + 3y = (4 - 8x)e^x$$
;

3)
$$y'' + 2y' + 5y = -17 \sin 2x$$
;

4)
$$y'' - 3y' + 2y = \frac{1}{3 + e^{-x}}$$
, $y(0) = 1 + 8 \ln 2$, $y'(0) = 14 \ln 2$.

Задание 10. Решить систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = 3x + 2y, \\ \frac{dy}{dt} = 4x + y. \end{cases}$$

Вариант 17

Задание 1. Найти общий интеграл дифференциального уравнения с разделяющимися переменными:

$$3(x^2y + y)dy + \sqrt{2 + y^2}dx = 0.$$

Задание 2. Найти общий интеграл однородного дифференциального уравнения первого порядка:

$$xy' = \sqrt{2x^2 + y^2} + y.$$

Задание 3. Найти решение задачи Коши линейного дифференциального уравнения первого порядка:

$$y' - \frac{2y}{x+1} = (x+1)^3$$
, $y(0) = \frac{1}{2}$.

Задание 4. Найти решение задачи Коши уравнения Бернулли:

$$y' - y = 2xy^2$$
, $y(0) = \frac{1}{2}$.

Задание 5. Найти общий интеграл дифференциального уравнения в полных дифференциалах:

$$(3x^3 + 6x^2y + 3xy^2)dx + (2x^3 + 3x^2y)dy = 0.$$

Задание 6. Найти общее решение дифференциального уравнения:

$$x^3y^{\prime\prime\prime} + x^2y^{\prime\prime} = \sqrt{x}.$$

Задание 7. Найти решение задачи Коши дифференциального уравнения:

$$y'' = 32y^3$$
, $y(4) = 1$, $y'(4) = 4$.

Задание 8. Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y'' - 4y' + 3y = 0$$
;

2)
$$y'' + 4y' + 4y = 0$$
;

3)
$$y'' + 4y' + 29y = 0$$
;

4)
$$v''' - 10v'' + 25v' = 0$$
:

5)
$$y^{IV} + 49y'' = 0$$
.

Задание 9. Найти общее решение (для уравнения 4 решить задачу Коши) линейного неоднородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y^{IV} - 3y''' + 3y'' - y' = 2x$$
;

2)
$$y''' + 2y'' + y' = (18x + 21)e^{2x}$$
;

3)
$$y'' - 4y' + 4y = -e^{2x} \sin 4x$$

2)
$$y'' + 2y' + y' = (10x + 21)e^{-x}$$
,
3) $y'' - 4y' + 4y = -e^{2x} \sin 4x$;
4) $y'' + 9y = \frac{9}{\sin 3x}$, $y(\frac{\pi}{6}) = 4$, $y'(\frac{\pi}{6}) = \frac{3\pi}{2}$.

Задание 10. Решить систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = x - 2y, \\ \frac{dy}{dt} = x + 4y. \end{cases}$$

Вариант 18

Задание 1. Найти общий интеграл дифференциального уравнения с разделяющимися переменными:

$$xdx - ydy = x^2ydy - xy^2dx.$$

Задание 2. Найти общий интеграл однородного дифференциального уравнения первого порядка:

$$xy' = \frac{3y^3 + 4yx^2}{2y^2 + 2x^2}.$$

Задание 3. Найти решение задачи Коши линейного дифференциального уравнения первого порядка:

$$y' + \frac{y}{2x} = x^2$$
, $y(1) = 1$.

Задание 4. Найти решение задачи Коши уравнения Бернулли:

$$3y' + 2xy = 2xy^{-2}e^{-2x^2}, y(0) = -1.$$

Задание 5. Найти общий интеграл дифференциального уравнения в полных дифференциалах:

$$xy^2dx + y(x^2 + y^2)dy = 0.$$

Задание 6. Найти общее решение дифференциального уравнения:

$$xy^{\prime\prime\prime} + y^{\prime\prime} = x + 1.$$

Задание 7. Найти решение задачи Коши дифференциального уравнения:

$$y'' = 18 \sin^3 y \cos y$$
, $y(1) = \frac{\pi}{2}$, $y'(1) = 3$.

Задание 8. Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y'' - 9y' + 8y = 0$$
;

2)
$$y'' - 2y' + y = 0$$
;

3)
$$y'' - 4y' + 13y = 0$$
;

4)
$$y''' - 144y' = 0$$
;

$$5) y^{IV} + 5y'' - 36y = 0.$$

Задание 9. Найти общее решение (для уравнения 4 решить задачу Коши) линейного неоднородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y''' - 2y'' = 3x^2 + x - 4$$
;

2)
$$y''' + 4y'' + 4y' = (9x + 15)e^x$$
;

3)
$$y'' - 4y' + 4y = e^{2x} \sin 4x$$
;

4)
$$y'' - 3y' + 2y = \frac{1}{2 + e^{-x}}$$
, $y(0) = 1 + 3 \ln 3$, $y'(0) = 5 \ln 3$.

Задание 10. Решить систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = x - 3y, \\ \frac{dy}{dt} = x + 5y. \end{cases}$$

Вариант 19

Задание 1. Найти общий интеграл дифференциального уравнения с разделяющимися переменными:

$$x\sqrt{1+y^2} + y'y\sqrt{1+x^2} = 0.$$

Задание 2. Найти общий интеграл однородного дифференциального уравнения первого порядка:

$$y' = \frac{x^2 + 2xy - y^2}{2x^2 - 2xy}.$$

Задание 3. Найти решение задачи Коши линейного дифференциального уравнения первого порядка:

$$y' + y \operatorname{tg} x = \cos^2 x$$
, $y\left(\frac{\pi}{4}\right) = \frac{1}{2}$.

Задание 4. Найти решение задачи Коши уравнения Бернулли:

$$3(xy' + y) = y^2 \ln x$$
, $y(1) = 3$.

Задание 5. Найти общий интеграл дифференциального уравнения в полных дифференциалах:

$$\left(\sin y + y\sin x + \frac{1}{x}\right)dx + \left(x\cos y - \cos x + \frac{1}{y}\right)dy = 0.$$

Задание 6. Найти общее решение дифференциального уравнения:

$$x^4y'' + x^3y' = 4.$$

Задание 7. Найти решение задачи Коши дифференциального уравнения:

$$y''y^3 + 1 = 0$$
, $y(1) = -1$, $y'(1) = -1$.

Задание 8. Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y'' + 6y' + 10y = 0$$
;

2)
$$y'' + 28y' + 196y = 0$$
;

3)
$$y'' - 4y' + 8y = 0$$
;

4)
$$y''' - 9y' = 0$$
;

5)
$$y^{IV} - 3y'' - 4y = 0$$
.

Задание 9. Найти общее решение (для уравнения 4 решить задачу Коши) линейного неоднородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y^V - y^{IV} = 2x + 3$$
;

2)
$$y''' + 3y'' + 2y' = (1 - 2x)e^{-x}$$
;

3)
$$y'' + 2y' = 3e^x(\sin x + \cos x)$$
;

4)
$$y'' - y' = \frac{e^{-x}}{2 + e^{-x}}$$
, $y(0) = \ln 27$, $y'(0) = \ln 9 - 1$.

Задание 10. Решить систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = 3x + y, \\ \frac{dy}{dt} = x + 3y. \end{cases}$$

Вариант 20

Задание 1. Найти общий интеграл дифференциального уравнения с разделяющимися переменными:

$$y(1+\ln y)+xy'=0.$$

Задание 2. Найти общий интеграл однородного дифференциального уравнения первого порядка:

$$xy' = 3\sqrt{2x^2 + y^2} + y.$$

Задание 3. Найти решение задачи Коши линейного дифференциального уравнения первого порядка:

$$y' - \frac{y}{x+2} = x^2 + 2x$$
, $y(-1) = \frac{3}{2}$.

Задание 4. Найти решение задачи Коши уравнения Бернулли:

$$2(y' + xy) = y^2 e^{-x} (1 + x), y(0) = 2.$$

Задание 5. Найти общий интеграл дифференциального уравнения в полных дифференциалах:

$$(3x^2y + 2y + 3)dx + (x^3 + 2x + 3y^2)dy = 0.$$

Задание 6. Найти общее решение дифференциального уравнения:

$$xy''' + y'' = \sqrt{x}.$$

Задание 7. Найти решение задачи Коши дифференциального уравнения:

$$y'' = 32 \sin^3 y \cos y$$
, $y(1) = \frac{\pi}{2}$, $y'(1) = 4$.

Задание 8. Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y'' + 6y' + 5y = 0$$
;

2)
$$y''_{yy} - 24y' + 144y = 0$$
;

3)
$$y'' - 14y' + 49y = 0$$
;

4)
$$y^{IV} - 169y'' = 0$$
;

5)
$$y^{IV} + 17y'' + 16y = 0$$
.

Задание 9. Найти общее решение (для уравнения 4 решить задачу Коши) линейного неоднородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y''' - y' = x^2 + x$$
;

2)
$$y''' - 2y'' + y' = (2x + 5)e^{2x}$$
;

3)
$$y'' + 6y' + 13y = e^{-3x} \cos 4x$$
;

2)
$$y'' + 6y' + 13y = e^{-3x} \cos 4x$$
;
4) $y'' + \pi^2 y = \frac{\pi^2}{\sin \pi x}$, $y\left(\frac{1}{2}\right) = 1$, $y'\left(\frac{1}{2}\right) = \frac{\pi^2}{2}$.

Задание 10. Решить систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = x + 6y, \\ \frac{dy}{dt} = -2x + 9y. \end{cases}$$

Вариант 21

Задание 1. Найти общий интеграл дифференциального уравнения с разделяющимися переменными:

$$6xdx - 6ydy = 3x^2ydy - 2xy^2dx.$$

Задание 2. Найти общий интеграл однородного дифференциального уравнения первого порядка:

$$y' = \frac{y^2}{x^2} + 6\frac{y}{x} + 6.$$

Задание 3. Найти решение задачи Коши линейного дифференциального уравнения первого порядка:

$$y' - \frac{2}{x+1}y = e^x(x+1)^2$$
, $y(0) = 1$.

Задание 4. Найти решение задачи Коши уравнения Бернулли:

$$2(y' + y) = xy^2$$
, $y(0) = 2$.

Задание 5. Найти общий интеграл дифференциального уравнения в полных дифференциалах:

$$(3x^2 + 4y^2)dx + (8xy + e^y)dy = 0.$$

Задание 6. Найти общее решение дифференциального уравнения:

$$cth x \cdot y'' + y' = ch x.$$

Задание 7. Найти решение задачи Коши дифференциального уравнения:

$$y'' = 98y^3$$
, $y(1) = 1, y'(1) = 7$.

Задание 8. Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y'' - 4y' - 21y = 0$$
;

2)
$$y'' + 16y' + 64y = 0$$
;
4) $y''' - 9y' = 0$;

3)
$$y'' - 8y' + 20y = 0$$
;

4)
$$v''' - 9v' = 0$$
:

5)
$$y^{IV} - 8y''' + 16y'' = 0$$
.

Задание 9. Найти общее решение (для уравнения 4 решить задачу Коши) линейного неоднородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y''' + 3y'' + 2y' = x^2 + 2x + 3$$
;

2)
$$y''' - 5y'' + 3y' + 9y = (32x - 32)e^{-x}$$
;

3)
$$y'' + y = 2 \cos 7x - 3 \sin 7x$$
;

4)
$$y'' + 6y' + 8y = \frac{4e^{-2x}}{2 + e^{2x}}, \quad y(0) = 0, y'(0) = 0.$$

Задание 10. Решить систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = 9x + 6y, \\ \frac{dy}{dt} = 2x + 8y. \end{cases}$$

Вариант 22

Задание 1. Найти общий интеграл дифференциального уравнения с разделяющимися переменными:

$$2x + 2xy^2 + \sqrt{2 - x^2}y' = 0.$$

Задание 2. Найти общий интеграл однородного дифференциального уравнения первого порядка:

$$3y' = \frac{y^2}{x^2} + 8\frac{y}{x} + 4.$$

Задание 3. Найти решение задачи Коши линейного дифференциального уравнения первого порядка:

$$y' + xy = -x^3$$
, $y(0) = 3$.

Задание 4. Найти решение задачи Коши уравнения Бернулли:

$$2xy' - 3y = -y^3(5x^2 + 3), \qquad y(1) = \frac{1}{\sqrt{2}}.$$

Задание 5. Найти общий интеграл дифференциального уравнения в полных дифференциалах:

$$\left(\frac{1}{x^2} + \frac{3y^2}{x^4}\right) dx - \frac{2y}{x^3} dy = 0.$$

Задание 6. Найти общее решение дифференциального уравнения:

$$xy''' + y'' = \frac{1}{\sqrt{x}}.$$

Задание 7. Найти решение задачи Коши дифференциального уравнения:

$$y^3y'' = y^4 - 16$$
, $y(0) = 2\sqrt{2}$, $y'(0) = \sqrt{2}$.

Задание 8. Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

1) y'' - 2y' - 8y = 0;

2) y'' - 18y' + 81y = 0; 4) y''' - 121y' = 0;

3) y'' - 4y' + 5y = 0;

5) $y^{IV} + 3y'' = 0$.

Задание 9. Найти общее решение (для уравнения 4 решить задачу Коши) линейного неоднородного дифференциального уравнения с постоянными коэффициентами:

- 1) $y^{IV} 2y''' + y'' = 2x + 2x^2$;
- 2) $y''' 3y' + 2y = (4x + 9)e^{2x}$;

3)
$$y'' - 4y' + 4y = -e^{2x} \sin 6x$$
;
4) $y'' + \frac{1}{\pi^2} y = \frac{1}{\pi^2 \cos \frac{x}{\pi}}$, $y(0) = 2, y'(0) = 0$.

Задание 10. Решить систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = x + 5y, \\ \frac{dy}{dt} = 5x + y. \end{cases}$$

Вариант 23

Задание 1. Найти общий интеграл дифференциального уравнения с разделяющимися переменными:

$$2xdx - 2ydy = x^2ydy - 2xy^2dx.$$

Задание 2. Найти общий интеграл однородного дифференциального уравнения первого порядка:

$$y' = \frac{x^2 + 3xy - y^2}{3x^2 - 2xy}.$$

Задание 3. Найти решение задачи Коши линейного дифференциального уравнения первого порядка:

$$y' - \frac{y}{x} = -\frac{12}{x^3}, \quad y(1) = 4.$$

Задание 4. Найти решение задачи Коши уравнения Бернулли:

$$xy' - y = -y^2(\ln x + 2)\ln x$$
, $y(1) = 1$.

Задание 5. Найти общий интеграл дифференциального уравнения в полных дифференциалах:

$$(\sin 2x - 2\cos(x+y))dx - 2\cos(x+y) \, dy = 0.$$

Задание 6. Найти общее решение дифференциального уравнения:

$$x^4y'' + x^3y' = 1.$$

Задание 7. Найти решение задачи Коши дифференциального уравнения:

$$y''y^3 + 64 = 0$$
, $y(0) = 4$, $y'(0) = 2$.

Задание 8. Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y'' - 5y' - 14y = 0$$
;

2)
$$y'' + 14y' + 49y = 0$$
;

3)
$$y'' - 7y' + 10y = 0$$
;

4)
$$y''' - 9y' = 0$$
;

5)
$$y^{IV} - 4y'' + 4y = 0$$
.

Задание 9. Найти общее решение (для уравнения 4 решить задачу Коши) линейного неоднородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y''' - 5y'' + 6y' = (x - 1)^2$$
;

2)
$$y''' + 4y'' + 5y' + 2y = (12x + 16)e^x$$
;

3)
$$y'' - 4y' + 8y = e^x(-\sin x + 2\cos x);$$

4)
$$y'' + 4y = \frac{4}{\sin 2x}$$
, $y(\frac{\pi}{4}) = 2$, $y'(\frac{\pi}{4}) = \pi$.

Задание 10. Решить систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = 4x + 6y, \\ \frac{dy}{dt} = 4x + 2y. \end{cases}$$

Вариант 24

Задание 1. Найти общий интеграл дифференциального уравнения с разделяющимися переменными:

$$y'y\sqrt{\frac{1-x^2}{1-y^2}} + 1 = 0.$$

Задание 2. Найти общий интеграл однородного дифференциального уравнения первого порядка:

$$xy' = 2\sqrt{x^2 + y^2} + y.$$

Задание 3. Найти решение задачи Коши линейного дифференциального уравнения первого порядка:

$$y' + 2xy = -2x^3$$
, $y(1) = e^{-1}$.

Задание 4. Найти решение задачи Коши уравнения Бернулли:

$$3xy' + 5y = y^4(4x - 5), y(1) = 1.$$

Задание 5. Найти общий интеграл дифференциального уравнения в полных дифференциалах:

$$\left(10xy - \frac{1}{\sin y}\right)dx + \left(5x^2 + \frac{x\cos y}{\sin^2 y} - y^2\sin y^3\right)dy = 0.$$

Задание 6. Найти общее решение дифференциального уравнения:

$$(x+1)y''' + y'' = x + 1.$$

Задание 7. Найти решение задачи Коши дифференциального уравнения:

$$y'' + 50 \sin y \cos^3 y = 0$$
, $y(0) = 0, y'(0) = 5$.

Задание 8. Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y'' - 8y' + 12y = 0$$
;

2)
$$y'' + 10y' + 25y = 0$$
;

3)
$$y'' + 2y' + 5y = 0$$
;

4)
$$v^{IV} + 4v'' = 0$$
:

5)
$$y^{IV} - 2y'' + y = 0$$
.

Задание 9. Найти общее решение (для уравнения 4 решить задачу Коши) линейного неоднородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y''' - y'' = 6x + 5$$
;

2)
$$y''' - y'' - 5y' - 3y = -(8x + 4)e^x$$
;

3)
$$y'' - 4y' + 4y = e^{2x} \sin 3x$$
;

4)
$$y'' - 2y' = \frac{4e^{-2x}}{1 + e^{-2x}}$$
, $y(0) = \ln 4$, $y'(0) = \ln 4 - 2$.

Задание 10. Решить систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = 5x + 4y, \\ \frac{dy}{dt} = -2x + 11y. \end{cases}$$

Вариант 25

Задание 1. Найти общий интеграл дифференциального уравнения с разделяющимися переменными:

$$(1+e^x)yy'=e^x.$$

Задание 2. Найти общий интеграл однородного дифференциального уравнения первого порядка:

$$3y' = \frac{y^2}{x^2} + 10\frac{y}{x} + 10.$$

 $3y' = \frac{y^2}{x^2} + 10\frac{y}{x} + 10.$ Задание 3. Найти решение задачи Коши линейного дифференциального уравнения первого порядка:

$$y' + \frac{2x}{1+x^2}y = \frac{2x^2}{1+x^2}, \qquad y(0) = \frac{2}{3}.$$

Задание 4. Найти решение задачи Коши уравнения Бернулли:

$$y' + y = xy^2$$
, $y(0) = 1$.

Задание 5. Найти общий интеграл дифференциального уравнения в полных дифференциалах:

$$xdx + ydy + (xdy - ydx)/(x^2 + y^2) = 0.$$

Задание 6. Найти общее решение дифференциального уравнения:

$$tg x \cdot y''' = 2y''.$$

Задание 7. Найти решение задачи Коши дифференциального уравнения:

$$y'' + 32 \sin y \cos^3 y = 0$$
, $y(0) = 0, y'(0) = 4$.

Задание 8. Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y'' - 2y' - 15y = 0$$
;

2)
$$y'' + 12y' + 36y = 0$$
;

3)
$$y'' + 2y' + 10y = 0$$
;

4)
$$y''' + 25y' = 0$$
;

5)
$$y^{IV} - 5y'' + 4y = 0$$
.

5)
$$y'' - 5y'' + 4y = 0$$
.

Задание 9. Найти общее решение (для уравнения 4 решить задачу Коши) линейного неоднородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y^{IV} + 2y''' + y'' = 2 - 3x^2$$
;

2)
$$y''' + y'' - 6y' = (20x + 14)e^{2x}$$
;

3)
$$y'' - 4y' + 8y = e^x(-3\sin x + 4\cos x);$$

4)
$$y'' + 16y = \frac{16}{\cos 4x}$$
, $y(0) = 3$, $y'(0) = 0$.

Задание 10. Решить систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = x + 4y, \\ \frac{dy}{dt} = x + y. \end{cases}$$

Вариант 26

Задание 1. Найти общий интеграл дифференциального уравнения с разделяющимися переменными:

$$y \ln y + xy' = 0.$$

Задание 2. Найти общий интеграл однородного дифференциального уравнения первого порядка:

$$2y' = \frac{y^2}{x^2} + 6\frac{y}{x} + 3.$$

Задание 3. Найти решение задачи Коши линейного дифференциального уравнения первого порядка:

$$y' + \frac{2y}{x} = x^3$$
, $y(1) = -\frac{5}{6}$.

Задание 4. Найти решение задачи Коши уравнения Бернулли:

$$2(xy' + y) = y^2 \ln x$$
, $y(1) = 2$.

Задание 5. Найти общий интеграл дифференциального уравнения в полных дифференциалах:

$$\left(1 + \frac{1}{y}e^{x/y}\right)dx + \left(1 - \frac{x}{y^2}e^{x/y}\right)dy = 0.$$

Задание 6. Найти общее решение дифференциального уравнения:

$$x^3y''' + x^2y'' = 1.$$

Задание 7. Найти решение задачи Коши дифференциального уравнения:

$$y'' = 8 \sin^3 y \cos y$$
, $y(1) = \frac{\pi}{2}$, $y'(1) = 2$.

Задание 8. Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y'' - 7y' + 12y = 0$$
;

2)
$$y'' - 16y' + 64y = 0$$
;

3)
$$v'' - 6v' + 10v = 0$$
:

2)
$$y'' - 16y' + 64y = 0$$
;
4) $y''' - 14y'' + 49y' = 0$;

5)
$$y^{IV} - 15y'' - 16y = 0$$
.

Задание 9. Найти общее решение (для уравнения 4 решить задачу Коши) линейного неоднородного дифференциального уравнения с постоянными коэффициентами:

- 1) $y''' 5y'' + 6y' = 6x^2 + 2x 5$;
- 2) $y''' 3y'' + 2y' = (1 2x)e^x$;
- 3) $y'' + y = 2\cos 7x + 3\sin 7x$;

4)
$$y'' - 6y' + 8y = \frac{4e^{2x}}{1 + e^{-2x}}, \quad y(0) = 0, y'(0) = 0.$$

Задание 10. Решить систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = 5x + 4y, \\ \frac{dy}{dt} = 2x + 3y. \end{cases}$$

Вариант 27

Задание 1. Найти общий интеграл дифференциального уравнения с разделяющимися переменными:

$$\sqrt{1 - x^2}y' + xy^2 + x = 0.$$

Задание 2. Найти общий интеграл однородного дифференциального уравнения первого порядка:

$$xy' = \sqrt{x^2 + y^2} + y.$$

Задание 3. Найти решение задачи Коши линейного дифференциального уравнения первого порядка:

$$y' - \frac{2xy}{1 + x^2} = 1 + x^2, \quad y(1) = 3.$$

Задание 4. Найти решение задачи Коши уравнения Бернулли:

$$2(y' + xy) = y^2 e^x (x - 1), y(0) = 2.$$

Задание 5. Найти общий интеграл дифференциального уравнения в полных дифференциалах:

$$(y^2 + y \sec^2 x)dx + (2xy + tgx)dy = 0.$$

Задание 6. Найти общее решение дифференциального уравнения:

$$x^3y''' + x^4y'' = 1.$$

Задание 7. Найти решение задачи Коши дифференциального уравнения:

$$y'' = 50 \sin^3 y \cos y$$
, $y(1) = \frac{\pi}{2}$, $y'(1) = 5$.

Задание 8. Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y'' + 3y' - 10y = 0$$
;

2)
$$y'' - 10y' + 25y = 0$$
;
4) $y^{IV} + 16y'' = 0$;

3)
$$y'' + 4y' + 13y = 0$$
;

4)
$$v^{IV} + 16v'' = 0$$
:

5)
$$y^{IV} - 8y'' - 9y = 0$$
.

Задание 9. Найти общее решение (для уравнения 4 решить задачу Коши) линейного неоднородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y''' - y' = 3x^2 - 2x + 1$$
;

2)
$$y''' - 2y'' - 3y' = (8x - 14)e^{-x}$$
;

3)
$$y'' - 4y' + 8y = e^x(5\sin x - 3\cos x)$$

3)
$$y'' - 4y' + 8y = e^x (5 \sin x - 3 \cos x);$$

4) $y'' - 9y' + 18y = \frac{9e^{3x}}{1 + e^{-3x}}, \quad y(0) = 0, y'(0) = 0.$

Задание 10. Решить систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = 3x + 4y, \\ \frac{dy}{dt} = 5x - y. \end{cases}$$

Вариант 28

Задание 1. Найти общий интеграл дифференциального уравнения с разделяющимися переменными:

$$6xdx - ydy = x^2ydy - 3xy^2dx.$$

Задание 2. Найти общий интеграл однородного дифференциального уравнения первого порядка:

$$y' = \frac{x^2 + 2xy - 5y^2}{2x^2 - 6xy}.$$

Задание 3. Найти решение задачи Коши линейного дифференциального уравнения первого порядка:

$$y' - \frac{y}{x} = x \sin x$$
, $y\left(\frac{\pi}{2}\right) = 1$.

Задание 4. Найти решение задачи Коши уравнения Бернулли:

$$2y' + 3y \cos x = y^{-1}e^{2x}(8 + 12\cos x), \quad y(0) = 2.$$

Задание 5. Найти общий интеграл дифференциального уравнения в полных дифференциалах:

$$\frac{x-y}{x^2+y^2}dx + \frac{x+y}{x^2+y^2}dy = 0.$$

Задание 6. Найти общее решение дифференциального уравнения:

$$cth x \cdot y'' - y' + \frac{1}{ch x} = 0.$$

Задание 7. Найти решение задачи Коши дифференциального уравнения:

$$y'' + 8 \sin y \cos^3 y = 0$$
, $y(0) = 0$, $y'(0) = 2$.

Задание 8. Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y'' + 9y' + 14y = 0$$
;

2)
$$y'' + 6y' + 9y = 0$$
;
4) $y^{IV} + 9y'' = 0$;

3)
$$y'' + 4y' + 29y = 0$$
;

4)
$$v^{IV} + 9v'' = 0$$
:

5)
$$y^{IV} + 3y'' - 4y = 0$$
.

Задание 9. Найти общее решение (для уравнения 4 решить задачу Коши) линейного неоднородного дифференциального уравнения с постоянными коэффициентами:

- 1) $y^{IV} + 4y''' + 4y''' = x x^2$;
- 2) $y''' y'' 9y' + 9y = (12 16x)e^x$;
- 3) $y'' + y = 2 \cos 3x 3 \sin 3x$;

4)
$$y'' + 4y = \frac{4}{\cos 2x}$$
, $y(0) = 2, y'(0) = 0$.

Задание 10. Решить систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = 7x - 5y, \\ \frac{dy}{dt} = -4x + 8y. \end{cases}$$

Вариант 29

Задание 1. Найти общий интеграл дифференциального уравнения с разделяющимися переменными:

$$\sqrt{5 + y^2} dx + 4(x^2y + y)dy = 0.$$

Задание 2. Найти общий интеграл однородного дифференциального уравнения первого порядка:

$$xy' = 2\sqrt{3x^2 + y^2} + y.$$

Задание 3. Найти решение задачи Коши линейного дифференциального уравнения первого порядка:

$$y' + \frac{1 - 2x}{x^2}y = 1$$
, $y(1) = 1$.

Задание 4. Найти решение задачи Коши уравнения Бернулли:

$$y' + 2y \coth x = y^2 \cot x$$
, $y(1) = \frac{1}{\sinh 1}$.

Задание 5. Найти общий интеграл дифференциального уравнения в полных дифференциалах:

$$(\cos(x+y^2) + \sin x)dx + 2y\cos(x+y^2) dy = 0.$$

Задание 6. Найти общее решение дифференциального уравнения:

$$(1+x^2)y'' + 2xy' = 12x^3.$$

Задание 7. Найти решение задачи Коши дифференциального уравнения:

$$y''y^3 + 49 = 0$$
, $y(3) = -7$, $y'(3) = -1$.

Задание 8. Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y'' + y' - 6y = 0$$
;

2)
$$y'' - 8y' + 16y = 0$$
;

3)
$$y'' + 6y' + 10y = 0$$
;

4)
$$v''' + v'' = 0$$
:

5)
$$y^{IV} - 3y'' - 4y = 0$$
.

Задание 9. Найти общее решение (для уравнения 4 решить задачу Коши) линейного неоднородного дифференциального уравнения с постоянными коэффициентами:

- 1) $y''' 13y'' + 12y' = 18x^2 39$;
- 2) $y''' + 4y'' + 3y' = (-4x + 4)e^{-x}$;
- 3) $y'' 4y' + 8y = e^x(3\sin x + 5\cos x);$

4)
$$y'' + \pi^2 y = \frac{\pi^2}{\cos \pi x}$$
, $y(0) = 3, y'(0) = 0$.

Задание 10. Решить систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = 5x + y, \\ \frac{dy}{dt} = -3x + 9y. \end{cases}$$

Вариант 30

Задание 1. Найти общий интеграл дифференциального уравнения с разделяющимися переменными:

$$\sqrt{4+y^2}dx - ydy = x^2ydy.$$

Задание 2. Найти общий интеграл однородного дифференциального уравнения первого порядка:

$$xy' = 3\sqrt{x^2 + y^2} + y.$$

Задание 3. Найти решение задачи Коши линейного дифференциального уравнения первого порядка:

$$y' - \frac{y}{x+1} = e^x(x+1), \quad y(0) = 1.$$

Задание 4. Найти решение задачи Коши уравнения Бернулли:

$$2y' - 3y \cos x = -y^{-1}e^{-2x}(2 + 3\cos x), \quad y(0) = 1$$

Задание 5. Найти общий интеграл дифференциального уравнения в полных дифференциалах:

$$(5xy^2 - x^3)dx + (5x^2y - y)dy = 0.$$

Задание 6. Найти общее решение дифференциального уравнения:

$$y^{\prime\prime\prime}\operatorname{ctg}2x + 2y^{\prime\prime} = 0.$$

Задание 7. Найти решение задачи Коши дифференциального уравнения:

$$4y^3y'' = y^4 - 16, y(0) = 2\sqrt{2}, y'(0) = \frac{1}{\sqrt{2}}.$$

Задание 8. Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

1)
$$y'' - 4y' + 3y = 0$$
;

2)
$$y'' + 4y' + 4y = 0$$

3)
$$y'' + 4y' + 29y = 0$$
;

2)
$$y'' + 4y' + 4y = 0$$
;
4) $y''' - 10y'' + 25y' = 0$;

5)
$$y^{IV} + 49y'' = 0$$
.

Задание 9. Найти общее решение (для уравнения 4 решить задачу Коши) линейного неоднородного дифференциального уравнения с постоянными коэффициентами:

- 1) $y^{IV} + 2y''' + y'' = 2 3x^2$;
- 2) $v''' 7v'' + 15v' 9y = (8x 12)e^x$;
- 3) $y'' + y = 2 \cos 4x + 3 \sin 4x$;

4)
$$y'' - 3y' + 2y = \frac{e^x}{1 + e^{-x}}, \quad y(0) = 0, y'(0) = 0.$$

Задание 10. Решить систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = x - 2y, \\ \frac{dy}{dt} = 3x + 6y. \end{cases}$$

Раздел 5. РЯДЫ

Вариант 1

Задание 1. Исследовать ряд на сходимость по определению сходящегося ряда:

$$\frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} + \frac{1}{7\cdot 9} + \cdots$$

Задание 2. Исследовать ряд на сходимость, применяя необходимый признак:

$$\sum_{n=1}^{\infty} \frac{5n-1}{3n+1}.$$

Задание 3. Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов:

$$\sum_{n=1}^{\infty} \frac{(2n-1)!}{n!}.$$

$$\sum_{n=1}^{\infty} \frac{2n+3}{n^2+n+1}.$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n^2 + 1}}$$

Задание 6. Найти область сходимости данного степенного ряда:

1)
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^{n+1}}{n(n+2)}$$
;

$$2)\sum_{n=1}^{\infty} \frac{(x-1)^{2n}}{2^n \sqrt{n^2+1}}$$

Задание 7.

- а) Разложить в ряд Тейлора по степеням (x-1).
- б) Разложить в ряд Маклорена, используя известные разложения функций

a)
$$f(x) = 3x^4 + 2x^2 - 4$$
;

$$f(x) = \frac{1}{\sqrt{1 - x^2}}.$$

Задание 8.

- а) Найти приближенное значение функции с точностью до 0,001.
- б) Найти приближенное значение интегралов с точностью до 0,001.

a)
$$\sqrt[3]{1,005}$$
;

6)
$$\int_{0}^{0.25} \frac{1 - \cos 4x}{x^2} dx.$$

Задание 9. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего данным начальным условиям:

$$y'' + 3x^2y = 1$$
, $y(0) = 0$, $y'(0) = 0$.

Задание 10.

- а) Разложить функцию в ряд Фурье.
- б) Разложить функцию в неполный ряд Фурье в указанном интервале.

a)
$$f(x) = \begin{cases} 1, -2 < x \le 0; \\ 1 - x, 0 < x < 2; \end{cases}$$

б)
$$f(x) = \pi - 2x$$
, $\left(0; \frac{\pi}{2}\right)$ по синусам.

Вариант 2

Задание 1. Исследовать ряд на сходимость по определению сходящегося ряда: $\frac{1}{1\cdot 7} + \frac{1}{3\cdot 9} + \frac{1}{5\cdot 11} + \cdots.$

$$\frac{1}{1\cdot 7} + \frac{1}{3\cdot 9} + \frac{1}{5\cdot 11} + \cdots$$

Задание 2. Исследовать ряд на сходимость, применяя необходимый признак:

$$\sum_{n=1}^{\infty} \frac{n(n+1)}{n^2+1}.$$

Задание 3. Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов:

$$\sum_{n=1}^{\infty} \frac{3^n \cdot n^2}{n!}.$$

91

$$\sum_{n=1}^{\infty} \frac{1}{n^2 - 2n + 2}.$$

$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{n^2}{n!}.$$

Задание 6. Найти область сходимости данного степенного ряда:

$$1)\sum_{n=1}^{\infty}\frac{(-2)^{n+1}x^n}{2n+1};$$

$$2) \sum_{n=1}^{\infty} \frac{n^2 (x-1)^{2n}}{n!}.$$

Задание 7.

- а) Разложить в ряд Тейлора по степеням (x 1).
- б) Разложить в ряд Маклорена, используя известные разложения функций

a)
$$f(x) = x^3 + 2x + 1$$
;

$$6) f(x) = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right).$$

Задание 8.

- а) Найти приближенное значение функции с точностью до 0,001.
- б) Найти приближенное значение интегралов с точностью до 0,001.

a)
$$\sqrt{1,08}$$
;

6)
$$\int_{0}^{0.2} \frac{\arcsin 2x}{x} dx.$$

Задание 9. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего данным начальным условиям:

$$y'' + 0.5x^2y = x^2$$
, $y(0) = 0, y'(0) = 0$.

Задание 10.

- а) Разложить функцию в ряд Фурье.
- б) Разложить функцию в неполный ряд Фурье в указанном интервале. a) $f(x) = \begin{cases} 0, -\pi < x \le 0; \\ \pi x, 0 < x < \pi; \end{cases}$ б) $f(x) = \frac{x}{2} 1$, (0; 2) по косинусам.

a)
$$f(x) = \begin{cases} 0, -\pi < x \le 0; \\ \pi - x, 0 < x < \pi \end{cases}$$

б)
$$f(x) = \frac{x}{2} - 1$$
, (0; 2) по косинусам.

Вариант 3

Задание 1. Исследовать ряд на сходимость по определению сходящегося ряда:

$$\frac{5}{1 \cdot 2} + \frac{5}{2 \cdot 3} + \frac{5}{3 \cdot 4} + \cdots$$

Задание 2. Исследовать ряд на сходимость, применяя необходимый признак:

$$\sum_{n=1}^{\infty} \frac{3n-2}{4n-1}.$$

Задание 3. Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов:

$$\sum_{n=1}^{\infty} \left(\frac{2n+1}{3n-2}\right)^n.$$

$$\sum_{n=1}^{\infty} \frac{n}{(n+1)^3}.$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n \ln n}.$$

Задание 6. Найти область сходимости данного степенного ряда:

1)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n+1) x^n}{n^2 + 1}$$
;

2)
$$\sum_{n=1}^{\infty} \frac{(x+1)^{2n-1}}{2^n(n+1)(n+2)}.$$

Задание 7.

- а) Разложить в ряд Тейлора по степеням (x-1).
- б) Разложить в ряд Маклорена, используя известные разложения функций

a)
$$f(x) = x^4 + x^2 + 2x - 1$$
;

б)
$$f(x) = (1 + x) \cdot e^{-x}$$
.

Задание 8.

- а) Найти приближенное значение функции с точностью до 0,001.
- б) Найти приближенное значение интегралов с точностью до 0,001.

a)
$$\sqrt[3]{30}$$
;

$$6) \int_{0}^{1} \cos \sqrt[3]{x} \, dx.$$

Задание 9. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего данным начальным условиям:

$$y'' + 2x^2y = 1$$
, $y(0) = 0$, $y'(0) = 0$.

Задание 10.

- а) Разложить функцию в ряд Фурье.
- б) Разложить функцию в неполный ряд Фурье в указанном интервале. a) $f(x) = \begin{cases} 0, -1 < x \le 0; \\ \frac{x}{2}, 0 < x < 1; \end{cases}$ б) $f(x) = 4x, (0; \pi)$ по косинусам.

a)
$$f(x) = \begin{cases} 0, -1 < x \le 0 \\ \frac{x}{2}, 0 < x < 1; \end{cases}$$

б)
$$f(x) = 4x$$
, $(0; \pi)$ по косинусам.

Вариант 4

Задание 1. Исследовать ряд на сходимость по определению сходящегося ряда:

$$\frac{4}{2 \cdot 3} + \frac{4}{3 \cdot 4} + \frac{4}{4 \cdot 5} + \cdots$$

Задание 2. Исследовать ряд на сходимость, применяя необходимый признак:

$$\sum_{n=1}^{\infty} \frac{n^2 + 4}{2n^2 + n + 1}.$$

Задание 3. Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов:

$$\sum_{n=1}^{\infty} \frac{2^{2n-1}}{e^n}.$$

$$\sum_{n=1}^{\infty} \frac{1}{n(1+\ln n)}.$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2^n(n+1)}.$$

Задание 6. Найти область сходимости данного степенного ряда:

1)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n^3 x^n}{n!}$$
;

$$2)\sum_{n=1}^{\infty}\frac{2^{n}(x-2)^{2n-1}}{n^{2}}.$$

Задание 7.

- а) Разложить в ряд Тейлора по степеням (x-1).
- б) Разложить в ряд Маклорена, используя известные разложения функций

a)
$$f(x) = x^4 + 3x^2 + 6x - 1$$
;

б)
$$f(x) = \sqrt{x} \sin \sqrt{x}$$
.

Задание 8.

- а) Найти приближенное значение функции с точностью до 0,001.
- б) Найти приближенное значение интегралов с точностью до 0,001. $\cos \frac{1}{4};$ б) $\int_{0.5}^{0.5} \frac{dx}{1+x^4}.$

a)
$$\cos \frac{1}{4}$$
;

6)
$$\int_{0}^{0.5} \frac{dx}{1+x^4}$$

Задание 9. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего данным начальным условиям:

$$y'' + 1.5x^2y = x^2$$
, $y(0) = 0, y'(0) = 0$.

Задание 10.

- а) Разложить функцию в ряд Фурье.
- б) Разложить функцию в неполный ряд Фурье в указанном интервале. a) $f(x) = \begin{cases} 0, 0 < x \le 1; \\ x 1, 1 < x < 2; \end{cases}$ б) $f(x) = \frac{\pi + x}{2}$, $(0; \pi)$ по косинусам.

a)
$$f(x) = \begin{cases} 0, 0 < x \le 1; \\ x - 1, 1 < x < 2 \end{cases}$$

б)
$$f(x) = \frac{\pi + x}{2}$$
, (0; π) по косинусам.

Вариант 5

Задание 1. Исследовать ряд на сходимость по определению сходящегося ряда:

$$\frac{1}{2 \cdot 5} + \frac{1}{5 \cdot 8} + \frac{1}{8 \cdot 11} + \cdots$$

Задание 2. Исследовать ряд на сходимость, применяя необходимый признак:

$$\sum_{n=1}^{\infty} \frac{3n-1}{3n+2}.$$

Задание 3. Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов:

$$\sum_{n=1}^{\infty} \frac{n!}{2^n}.$$

94

$$\sum_{n=1}^{\infty} \sin \frac{1}{n^2}.$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{(n+1)^2}}.$$

Задание 6. Найти область сходимости данного степенного ряда:

1)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \sqrt{n} x^{n+1}}{2n+1}$$
;

$$2)\sum_{n=0}^{\infty} \frac{(x-3)^{2n-1}}{2^n(3n+4)}.$$

Задание 7.

- а) Разложить в ряд Тейлора по степеням (x 1).
- б) Разложить в ряд Маклорена, используя известные разложения функций в ряды.

a)
$$f(x) = 4x^4 - x^2 + 5$$
;

$$f(x) = \frac{1}{e^{\frac{\pi x}{4}}}.$$

Задание 8.

- а) Найти приближенное значение функции с точностью до 0,001.
- б) Найти приближенное значение интегралов с точностью до 0,001.

a)
$$e^{-1}$$
;

$$\text{6)} \int_{0}^{0.25} \frac{dx}{1 + \sqrt{x}}.$$

Задание 9. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего данным начальным условиям:

$$y'' + x^2y = x$$
, $y(0) = 0$, $y'(0) = 0$.

Задание 10.

- а) Разложить функцию в ряд Фурье.
- б) Разложить функцию в неполный ряд Фурье в указанном интервале.

a)
$$f(x) = \begin{cases} 2x - 1, 0 < x \le \frac{1}{2}; \\ 0, \frac{1}{2} < x < 1; \end{cases}$$

б) f(x) = 3x, (0; π) по косинусам.

Вариант 6

Задание 1. Исследовать ряд на сходимость по определению сходящегося ряда:

$$\frac{1}{2\cdot 5} + \frac{1}{3\cdot 6} + \frac{1}{4\cdot 7} + \cdots$$

Задание 2. Исследовать ряд на сходимость, применяя необходимый признак:

$$\sum_{n=1}^{\infty} \frac{n^2 + n}{2n^2 + 1}.$$

Задание 3. Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов:

$$\sum_{n=1}^{\infty} \left(\frac{3n-1}{2n+3}\right)^n.$$

Задание 4. Исследовать ряд на сходимость:

$$\sum_{n=1}^{\infty} \frac{n^3 + 1}{(n^2 + 1)^2}.$$

Задание 5. Исследовать ряд на абсолютную и условную сходимости:

$$\sum_{n=1}^{\infty} \frac{(-2)^n}{n \cdot 3^n}.$$

Задание 6. Найти область сходимости данного степенного ряда:

$$1)\sum_{n=1}^{\infty}\frac{(-1)^nx^{2n}}{4^nn^2};$$

$$2)\sum_{n=1}^{\infty} \frac{n(x+2)^n}{n^2+1}.$$

Задание 7.

- а) Разложить в ряд Тейлора по степеням (x 1).
- б) Разложить в ряд Маклорена, используя известные разложения функций в ряды.

a)
$$f(x) = (x+1)^3(x^2-4)$$
;

$$6) f(x) = \frac{1}{10 + x}.$$

Задание 8.

- а) Найти приближенное значение функции с точностью до 0,001.
- б) Найти приближенное значение интегралов с точностью до 0,001.

$$6) \int_{0}^{1} \frac{dx}{e^{\sqrt{x}}}.$$

Задание 9. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего данным начальным условиям:

$$y'' + x^2y = 1$$
, $y(0) = 0$, $y'(0) = 0$.

Задание 10.

- а) Разложить функцию в ряд Фурье.
- б) Разложить функцию в неполный ряд Фурье в указанном интервале.

a)
$$f(x) = \begin{cases} x + 1, -1 < x \le 0; \\ 1 - x, 0 < x < 1; \end{cases}$$

б)
$$f(x) = \frac{x}{3}$$
, (0; π) по косинусам.

Вариант 7

Задание 1. Исследовать ряд на сходимость по определению сходящегося ряда:

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$$

Задание 2. Исследовать ряд на сходимость, применяя необходимый признак:

$$\sum_{n=1}^{\infty} \frac{4n-3}{4n+1}.$$

Задание 3. Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов:

$$\sum_{n=1}^{\infty} \frac{2n-1}{2^n}.$$

96

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{\ln n}}$$

$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{n^2}{2^n}.$$

Задание 6. Найти область сходимости данного степенного ряда:

1)
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n-1}}{2n-1}$$
;

$$2)\sum_{n=1}^{\infty}\frac{(x\mp 2)^n}{n\cdot 2^n}.$$

Задание 7.

- а) Разложить в ряд Тейлора по степеням (x-1).
- б) Разложить в ряд Маклорена, используя известные разложения функций

a)
$$f(x) = (x^2 + 4)(x - 3)^3$$
;

б)
$$f(x) = x \cdot \ln(1 + x^2)$$
.

Задание 8.

- а) Найти приближенное значение функции с точностью до 0,001.
- б) Найти приближенное значение интегралов с точностью до 0,001.

6)
$$\int_{0}^{1/2} \ln(1+x^3) \, dx.$$

Задание 9. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего начальным условиям:

$$y'' + 2.6x^2y = 1$$
, $y(0) = 0, y'(0) = 0$.

Задание 10.

- а) Разложить функцию в ряд Фурье.
- б) Разложить функцию в неполный ряд Фурье в указанном интервале. а) $f(x) = \begin{cases} x, -\pi < x \le 0; \\ 0, 0 < x < \pi; \end{cases}$ б) $f(x) = \frac{x-2}{2}$, (0; 2) по синусам.

a)
$$f(x) = \begin{cases} x, -\pi < x \le 0 \\ 0, 0 < x < \pi; \end{cases}$$

б)
$$f(x) = \frac{x-2}{2}$$
, (0; 2) по синусам.

Вариант 8

Задание 1. Исследовать ряд на сходимость по определению сходящегося ряда:

$$1 + \frac{4}{3} + \frac{16}{9} + \frac{64}{27} + \cdots$$

Задание 2. Исследовать ряд на сходимость, применяя необходимый признак:

$$\sum_{n=1}^{\infty} \sqrt{\frac{4n+1}{3n-1}}.$$

Задание 3. Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов:

$$\sum_{n=1}^{\infty} \left(\frac{n}{2n+1} \right)^{3n}.$$

$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2+1}.$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n\sqrt{\ln n}}.$$

Задание 6. Найти область сходимости данного степенного ряда:

1)
$$\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n-1)^2 \sqrt{3^n}};$$

2)
$$\sum_{n=1}^{\infty} (-1)^n \frac{(x-4)^n}{2^n(n+1)}$$
.

Задание 7.

- а) Разложить в ряд Тейлора по степеням (x-1).
- б) Разложить в ряд Маклорена, используя известные разложения функций

a)
$$f(x) = (2x + 1)^4$$
;

$$6) f(x) = \sqrt{1 + \frac{\pi x}{4}}.$$

Задание 8.

- а) Найти приближенное значение функции с точностью до 0,001.
- б) Найти приближенное значение интегралов с точностью до 0,001.

a)
$$\sqrt[11]{2050}$$
;

$$6) \int_{2}^{4} e^{\frac{1}{x}} dx.$$

Задание 9. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего начальным условиям:

$$y'' + 0.5x^2y = 0$$
, $y(0) = 1, y'(0) = 0$.

Задание 10.

- а) Разложить функцию в ряд Фурье.
- б) Разложить функцию в неполный ряд Фурье в указанном интервале. a) $f(x) = \begin{cases} -x, -2 < x \le 0; \\ 0, 0 < x < 2; \end{cases}$ б) f(x) = 1, (0; 2) по синусам.

a)
$$f(x) = \begin{cases} -x, -2 < x \le 0 \\ 0, 0 < x < 2; \end{cases}$$

б)
$$f(x) = 1$$
, (0; 2) по синусам

Вариант 9

Задание 1. Исследовать ряд на сходимость по определению сходящегося ряда:

$$\frac{1}{5} + \frac{3}{25} + \frac{7}{125} + \frac{15}{625} + \cdots$$

Задание 2. Исследовать ряд на сходимость, применяя необходимый признак:

$$\sum_{n=1}^{\infty} \frac{2n+1}{3n-2}.$$

Задание 3. Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов:

$$\sum_{n=1}^{\infty} \frac{2^n \cdot n!}{(2n)!}.$$

98

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{4n-3}}$$

$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{n}{n^2 + 1}.$$

Задание 6. Найти область сходимости данного степенного ряда:

1)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (x+3)^n}{n(1+\ln n)}$$
;

2)
$$\sum_{n=1}^{\infty} \frac{(2x)^{2n-1}}{(2n-1)!}.$$

Задание 7.

- а) Разложить в ряд Тейлора по степеням (x 1).
- б) Разложить в ряд Маклорена, используя известные разложения функций в ряды.

a)
$$f(x) = x^2(2 - 3x)$$
;

6)
$$f(x) = (e^x - 1)^2$$
.

Задание 8.

- а) Найти приближенное значение функции с точностью до 0,001.
- б) Найти приближенное значение интегралов с точностью до 0,001.

6)
$$\int_{0}^{2/5} \sqrt[3]{1+x^2} \, dx$$
.

Задание 9. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего данным начальным условиям:

$$y'' + \frac{2}{3}x^2y = x^2$$
, $y(0) = 0, y'(0) = 0$.

Задание 10.

- а) Разложить функцию в ряд Фурье.
- б) Разложить функцию в неполный ряд Фурье в указанном интервале.

a)
$$f(x) = \begin{cases} 1, -2 < x \le 0; \\ x, 0 < x < 2; \end{cases}$$

б)
$$f(x) = 2x$$
, (0; π) по косинусам.

Вариант 10

Задание 1. Исследовать ряд на сходимость по определению сходящегося ряда:

$$\frac{3}{1\cdot 3} + \frac{3}{2\cdot 4} + \frac{3}{3\cdot 5} + \cdots$$

Задание 2. Исследовать ряд на сходимость, применяя необходимый признак:

$$\sum_{n=1}^{\infty} \frac{n+2}{2n+1}.$$

Задание 3. Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов:

$$\sum_{n=1}^{\infty} \frac{3^{2n-1}}{n^2+1}.$$

$$\sum_{n=1}^{\infty} \frac{3n+2}{n^2+1}.$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n(n+1)(n+2)}.$$

Задание 6. Найти область сходимости данного степенного ряда:

1)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n^3 (x-3)^{2n}}{3^n}$$
;

$$2)\sum_{n=1}^{\infty}\frac{\sqrt{n}\cdot x^n}{(2n-1)!}.$$

Задание 7.

- а) Разложить в ряд Тейлора по степеням (x 1).
- б) Разложить в ряд Маклорена, используя известные разложения функций в ряды.

a)
$$f(x) = x^4 - x^2 + 3x + 1$$
;

б)
$$f(x) = \sin x - x \cos x$$
.

Задание 8.

- а) Найти приближенное значение функции с точностью до 0,001.
- б) Найти приближенное значение интегралов с точностью до 0,001.

a)
$$\sqrt[3]{e}$$
;

6)
$$\int_{0}^{0.5} \frac{dx}{1+x^3}$$
.

Задание 9. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего данным начальным условиям:

$$y'' + 2x^2y = x$$
, $y(0) = 0$, $y'(0) = 0$.

Задание 10.

- а) Разложить функцию в ряд Фурье.
- б) Разложить функцию в неполный ряд Фурье в указанном интервале.

a)
$$f(x) = \begin{cases} -2, -1 < x \le 0; \\ 3, 0 < x < 1; \end{cases}$$

б)
$$f(x) = \pi - x$$
, (0; π) по косинусам.

Вариант 11

Задание 1. Исследовать ряд на сходимость по определению сходящегося ряда:

$$\frac{2}{3} + \frac{4}{9} + \frac{8}{27} + \frac{16}{81} + \cdots$$

Задание 2. Исследовать ряд на сходимость, применяя необходимый признак:

$$\sum_{n=1}^{\infty} \sqrt{\frac{2n}{n+1}}.$$

Задание 3. Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов:

$$\sum_{n=1}^{\infty} \frac{4n-3}{\pi^n}.$$

$$\sum_{n=1}^{\infty} \frac{n^2}{\sqrt{n^3 + 1}}$$

$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{1}{\sin 3^n}.$$

Задание 6. Найти область сходимости данного степенного ряда:

1)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (x-3)^{2n}}{2n^2+1}$$
;

$$2)\sum_{n=1}^{\infty}\frac{n!\,x^n}{(n+1)^n}.$$

Задание 7.

- а) Разложить в ряд Тейлора по степеням (x 1).
- б) Разложить в ряд Маклорена, используя известные разложения функций в ряды.

a)
$$f(x) = (x^2 + 1)(x + 1)$$
;

$$f(x) = \frac{1}{(1+x^2)^2}.$$

Задание 8.

- а) Найти приближенное значение функции с точностью до 0,001.
- б) Найти приближенное значение интегралов с точностью до 0,001.

$$\text{6)} \int_{0}^{2/3} e^{-\frac{9}{4}x^2} \, dx.$$

Задание 9. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего данным начальным условиям:

$$y'' + 1.5x^2y = 0$$
, $y(0) = 1, y'(0) = 0$.

Задание 10.

- а) Разложить функцию в ряд Фурье.
- б) Разложить функцию в неполный ряд Фурье в указанном интервале.

a)
$$f(x) = \begin{cases} -1, 0 < x \le 1; \\ 1, 1 < x < 2; \end{cases}$$

б)
$$f(x) = \pi + x$$
, $(0; 2\pi)$ по косинусам.

Вариант 12

Задание 1. Исследовать ряд на сходимость по определению сходящегося ряда:

$$\frac{1}{1 \cdot 5} + \frac{1}{5 \cdot 9} + \frac{1}{9 \cdot 13} + \frac{1}{13 \cdot 17} + \cdots$$

Задание 2. Исследовать ряд на сходимость, применяя необходимый признак:

$$\sum_{n=1}^{\infty} \frac{n(n+3)}{(n+1)(n+2)}.$$

Задание 3. Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов:

$$\sum_{n=1}^{\infty} \frac{n^3+1}{n^2+1} \cdot \left(\frac{2}{3}\right)^n.$$

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2 + n}}$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot 2n}{n^2 + n + 1}.$$

Задание 6. Найти область сходимости данного степенного ряда:

1)
$$\sum_{n=0}^{\infty} \frac{(-1)^{n-1}(x-4)^{2n-1}}{2n-1}$$
;

$$2) \sum_{n=1}^{\infty} \frac{x^{n-1}}{n \cdot 3^{2n-1}}.$$

Задание 7.

- а) Разложить в ряд Тейлора по степеням (x 1).
- б) Разложить в ряд Маклорена, используя известные разложения функций

a)
$$f(x) = 2x^4 + x^2 - x + 3$$
;

б)
$$f(x) = e^{2x-1}$$
.

Задание 8.

- а) Найти приближенное значение функции с точностью до 0,001.
- б) Найти приближенное значение интегралов с точностью до 0,001.

$$\text{6)} \int_{0}^{0,1} e^{1-3x^2} \, dx.$$

Задание 9. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего данным начальным условиям:

$$y'' + x^2y = x^2$$
, $y(0) = 0, y'(0) = 0$.

Задание 10.

- а) Разложить функцию в ряд Фурье.
- б) Разложить функцию в неполный ряд Фурье в указанном интервале. a) $f(x) = \begin{cases} x, -\pi < x \le 0; \\ -\frac{x}{2}, 0 < x < \pi; \end{cases}$ б) $f(x) = \frac{3}{2}x, (0; 2)$ по синусам.

a)
$$f(x) = \begin{cases} x, -\pi < x \le 0; \\ -\frac{x}{2}, 0 < x < \pi; \end{cases}$$

б)
$$f(x) = \frac{3}{2}x$$
, (0; 2) по синусам.

Вариант 13

Задание 1. Исследовать ряд на сходимость по определению сходящегося ряда:

$$\frac{1}{1 \cdot 4} + \frac{1}{4 \cdot 7} + \frac{1}{7 \cdot 10} + \cdots$$

Задание 2. Исследовать ряд на сходимость, применяя необходимый признак:

$$\sum_{n=1}^{\infty} \frac{2n^2 - 1}{2n^2 + 1}.$$

Задание 3. Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов:

$$\sum_{n=1}^{\infty} \frac{n^3}{e^n}.$$

$$\sum_{n=1}^{\infty} \frac{\ln n}{n^3}.$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot 5^{2n-1}}{(n+1)!}.$$

Задание 6. Найти область сходимости данного степенного ряда:

$$1)\sum_{n=1}^{\infty}\frac{(-1)^nnx^{n-1}}{3n+2};$$

$$2) \sum_{n=1}^{\infty} \frac{\ln n (x+1)^{2n}}{4^n}.$$

Задание 7.

- а) Разложить в ряд Тейлора по степеням (x 1).
- б) Разложить в ряд Маклорена, используя известные разложения функций в ряды.

a)
$$f(x) = 2x^3 - x^2 + 5$$
;

б)
$$f(x) = \ln(1 + x^3)$$
.

Задание 8.

- а) Найти приближенное значение функции с точностью до 0,001.
- б) Найти приближенное значение интегралов с точностью до 0,001.

a)
$$\sqrt[3]{e}$$
;

$$6) \int_{0}^{0.2} \cos \frac{x^3}{2} dx.$$

Задание 9. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего данным начальным условиям:

$$y'' + 2.5x^2y = x^2$$
, $y(0) = 0, y'(0) = 0$.

Задание 10.

- а) Разложить функцию в ряд Фурье.
- б) Разложить функцию в неполный ряд Фурье в указанном интервале.

a)
$$f(x) = \begin{cases} -1, -1 < x \le 0; \\ 1, 0 < x < 1; \end{cases}$$

б)
$$f(x) = x$$
, (0; π) по косинусам.

Вариант 14

Задание 1. Исследовать ряд на сходимость по определению сходящегося ряда:

$$1 + \frac{1}{5} + \frac{1}{5^2} + \frac{1}{5^3} + \cdots$$

Задание 2. Исследовать ряд на сходимость, применяя необходимый признак:

$$\sum_{n=1}^{\infty} \frac{n^2+1}{5n+3}.$$

Задание 3. Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов:

$$\sum_{n=1}^{\infty} \frac{2^n \cdot n^2}{5^n}.$$

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n^2+1)}}.$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n^2 + 2}}$$

Задание 6. Найти область сходимости данного степенного ряда:

$$1)\sum_{n=1}^{\infty}\frac{(-1)^{n+1}x^{2n}}{8^n};$$

$$2)\sum_{n=1}^{\infty}\frac{(x+1)^{n-1}}{n^2+4}.$$

Задание 7.

- а) Разложить в ряд Тейлора по степеням (x-1).
- б) Разложить в ряд Маклорена, используя известные разложения функций

a)
$$f(x) = x^3 + 2x^2 + x - 3$$
;

6)
$$f(x) = x(1 - \sqrt{1 - x})$$
.

Задание 8.

- а) Найти приближенное значение функции с точностью до 0,001.
- б) Найти приближенное значение интегралов с точностью до 0,001.

$$6) \int_{0}^{1} x^2 \sin x^2 dx.$$

Задание 9. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего начальным условиям:

$$y'' + x^2y = 0$$
, $y(0) = 1, y'(0) = 0$.

Задание 10.

- а) Разложить функцию в ряд Фурье.
- б) Разложить функцию в неполный ряд Фурье в указанном интервале. a) $f(x) = \begin{cases} -2, -2 < x \le 0; \\ 2, 0 < x \le 2; \end{cases}$ б) $f(x) = x^2, (0; \pi)$ по косинусам.

a)
$$f(x) = \begin{cases} -2, -2 < x \le 0 \\ 2, 0 < x \le 2; \end{cases}$$

б)
$$f(x) = x^2$$
, (0; π) по косинусам.

Вариант 15

Задание 1. Исследовать ряд на сходимость по определению сходящегося ряда:

$$\frac{1}{5 \cdot 8} + \frac{1}{8 \cdot 11} + \frac{1}{11 \cdot 14} + \cdots$$

Задание 2. Исследовать ряд на сходимость, применяя необходимый признак:

$$\sum_{n=1}^{\infty} \frac{5n-3}{6n+1}.$$

Задание 3. Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов:

$$\sum_{n=1}^{\infty} \left(\frac{n+1}{n} \right)^{n^2}.$$

$$\sum_{n=1}^{\infty} \frac{\sqrt{n^2 + 1}}{n^2 - n + 1}.$$

$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{n+1}{n(2n+1)}.$$

Задание 6. Найти область сходимости данного степенного ряда:

1)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n+1) x^n}{4n-3}$$
;

$$2)\sum_{n=1}^{\infty}\frac{(x-1)^{2n-1}}{3^n}.$$

Задание 7.

- а) Разложить в ряд Тейлора по степеням (x 1).
- б) Разложить в ряд Маклорена, используя известные разложения функций в ряды.

a)
$$f(x) = (x^2 + 1)^2$$
;

$$f(x) = \frac{x}{\sqrt{1+x^2}}.$$

Задание 8.

- а) Найти приближенное значение функции с точностью до 0,001.
- б) Найти приближенное значение интегралов с точностью до 0,001.

a) sin 15°;

6)
$$\int_{0}^{3\pi} \sqrt{x} \sin^2 x \, dx.$$

Задание 9. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего данным начальным условиям:

$$y'' + 0.8x^2y = x$$
, $y(0) = 0, y'(0) = 0$.

Задание 10.

- а) Разложить функцию в ряд Фурье.
- б) Разложить функцию в неполный ряд Фурье в указанном интервале.

a)
$$f(x) = 2x - 1, (-2, 2);$$

б)
$$f(x) = x + 1$$
, $(0; \pi)$ по косинусам.

Вариант 16

Задание 1. Исследовать ряд на сходимость по определению сходящегося ряда:

$$\frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \frac{2}{81} + \cdots$$

Задание 2. Исследовать ряд на сходимость, применяя необходимый признак:

$$\sum_{n=1}^{\infty} \sqrt{\frac{n+2}{2n+1}}.$$

Задание 3. Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов:

$$\sum_{n=1}^{\infty} \left(\frac{n}{2n-1} \right)^{2n}.$$

$$\sum_{n=1}^{\infty} \frac{n+1}{\sqrt{(n+2)^3}}$$

$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{3n-2}{n^3}.$$

Задание 6. Найти область сходимости данного степенного ряда:

1)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (x-1)^n}{(n+1)!}$$
;

$$2) \sum_{n=1}^{\infty} \frac{(2x)^{2n-1}}{n}.$$

Задание 7.

- а) Разложить в ряд Тейлора по степеням (x 1).
- б) Разложить в ряд Маклорена, используя известные разложения функций в ряды.

a)
$$f(x) = 5(x^2 - 1)^3$$
;

$$6) f(x) = \frac{1}{1 + 0.5x^2}.$$

Задание 8.

- а) Найти приближенное значение функции с точностью до 0,001.
- б) Найти приближенное значение интегралов с точностью до 0,001.

a) arctg 0,5;

$$6) \int_{0}^{1} \ln(1+\sqrt{x}) dx.$$

Задание 9. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего данным начальным условиям:

$$y'' + 1.5x^2y = x$$
, $y(0) = 0, y'(0) = 0$.

Задание 10.

- а) Разложить функцию в ряд Фурье.
- б) Разложить функцию в неполный ряд Фурье в указанном интервале.

a)
$$f(x) = \begin{cases} 2 - x, 0 < x \le 2; \\ 0, 2 < x < 4; \end{cases}$$

б)
$$f(x) = -2$$
, (0; π) по косинусам.

Вариант 17

Задание 1. Исследовать ряд на сходимость по определению сходящегося ряда:

$$\frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \frac{1}{3 \cdot 4 \cdot 5} + \cdots$$

Задание 2. Исследовать ряд на сходимость, применяя необходимый признак:

$$\sum_{n=1}^{\infty} \frac{5n-4}{4n+1}.$$

Задание 3. Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов:

$$\sum_{n=1}^{\infty} \left(\frac{n+1}{n}\right)^{3n} \cdot \frac{1}{3^n}.$$

$$\sum_{n=1}^{\infty} \frac{e^{2n}}{\sqrt{e^{2n}+1}}.$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot n}{\ln n}.$$

Задание 6. Найти область сходимости данного степенного ряда:

1)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(x+2)^n}{3^n+1}$$
;

$$2)\sum_{n=1}^{\infty} 36^n x^{2n-2}.$$

Задание 7.

- а) Разложить в ряд Тейлора по степеням (x 1).
- б) Разложить в ряд Маклорена, используя известные разложения функций в ряды.

a)
$$f(x) = (x^2 + 2)(x^2 - 5)$$
;

$$f(x) = \frac{x}{(1+x)^2}.$$

Задание 8.

- а) Найти приближенное значение функции с точностью до 0,001.
- б) Найти приближенное значение интегралов с точностью до 0,001.

a) arcsin 0,5;

6)
$$\int_{0}^{0,1} \frac{e^{x}-1}{x} dx$$
.

Задание 9. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего данным начальным условиям:

$$y'' + 2x^2y = 0$$
, $y(0) = 0$, $y'(0) = 1$.

Задание 10.

- а) Разложить функцию в ряд Фурье.
- б) Разложить функцию в неполный ряд Фурье в указанном интервале.

a)
$$f(x) = 4 - x$$
, (0; 4);

б)
$$f(x) = \frac{x}{2}$$
, (0; π) по синусам.

Вариант 18

Задание 1. Исследовать ряд на сходимость по определению сходящегося ряда:

$$\frac{1}{5 \cdot 9} + \frac{1}{9 \cdot 13} + \frac{1}{13 \cdot 17} + \frac{1}{17 \cdot 21} + \cdots$$

Задание 2. Исследовать ряд на сходимость, применяя необходимый признак:

$$\sum_{n=1}^{\infty} \frac{n^2(n+2)}{n^3+1}.$$

Задание 3. Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов:

$$\sum_{n=1}^{\infty} \frac{\sqrt{n^2+1}}{n!}.$$

$$\sum_{n=1}^{\infty} \sin \frac{\pi}{4^n}.$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot (2n+1)}{3^n}.$$

Задание 6. Найти область сходимости данного степенного ряда:

1)
$$\sum_{n=1}^{\infty} \frac{n^5 x^n}{(n+1)^n}$$
;

2)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(x-2)^{2n}}{n}$$
.

Задание 7.

- а) Разложить в ряд Тейлора по степеням (x 1).
- б) Разложить в ряд Маклорена, используя известные разложения функций в ряды.

a)
$$f(x) = 3x^3 + 2x - 4$$
;

$$f(x) = \frac{1}{1 + \frac{\pi x}{4}}$$

Задание 8.

- а) Найти приближенное значение функции с точностью до 0,001.
- б) Найти приближенное значение интегралов с точностью до 0,001.

a)
$$\sqrt[3]{1,08}$$
;

6)
$$\int_{0}^{0.5} \frac{dx}{\sqrt{1+x^4}}$$

Задание 9. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего данным начальным условиям:

$$y'' + 0.5x^2y = 1$$
, $y(0) = 0, y'(0) = 0$.

Задание 10.

- а) Разложить функцию в ряд Фурье.
- б) Разложить функцию в неполный ряд Фурье в указанном интервале.

a)
$$f(x) = \begin{cases} 2x, -\pi < x \le 0; \\ x, 0 < x < \pi; \end{cases}$$

б)
$$f(x) = 4 - x$$
, (0; 4) по косинусам.

Вариант 19

Задание 1. Исследовать ряд на сходимость по определению сходящегося ряда:

$$\frac{1}{5\cdot7} + \frac{1}{7\cdot9} + \frac{1}{9\cdot11} + \cdots$$

Задание 2. Исследовать ряд на сходимость, применяя необходимый признак:

$$\sum_{n=1}^{\infty} \frac{n^2}{n^2 + 1}.$$

Задание 3. Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов:

$$\sum_{n=1}^{\infty} \frac{(2n-1)^2}{2^{2n-1}}.$$

$$\sum_{n=1}^{\infty} \frac{4n-3}{n(n^2+1)}.$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot (n+5)}{n^2 + 1}.$$

Задание 6. Найти область сходимости данного степенного ряда:

$$1)\sum_{n=1}^{\infty}\frac{(-1)^n\sqrt{n}\cdot x^n}{n!};$$

$$2)\sum_{n=1}^{\infty}\frac{(n+1)(x\mp 1)^{2n}}{2^{n}}.$$

Задание 7.

- а) Разложить в ряд Тейлора по степеням (x 1).
- б) Разложить в ряд Маклорена, используя известные разложения функций в ряды.

a)
$$f(x) = (2 - x^2)(1 + x)$$
;

$$f(x) = \frac{1 - \cos x}{x^2}.$$

Задание 8.

- а) Найти приближенное значение функции с точностью до 0,001.
- б) Найти приближенное значение интегралов с точностью до 0,001.

6)
$$\int_{0}^{2} e^{-0.25x^{2}} dx$$
.

Задание 9. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего данным начальным условиям:

$$y'' + 0.5x^2y = x$$
, $y(0) = 0, y'(0) = 0$.

Задание 10.

- а) Разложить функцию в ряд Фурье.
- б) Разложить функцию в неполный ряд Фурье в указанном интервале.

a)
$$f(x) = |x| - 1, (-2, 2);$$

б)
$$f(x) = x - 1$$
, (0; π) по синусам.

Вариант 20

Задание 1. Исследовать ряд на сходимость по определению сходящегося ряда:

$$\frac{1}{2 \cdot 4} + \frac{1}{4 \cdot 6} + \frac{1}{6 \cdot 8} + \cdots$$

Задание 2. Исследовать ряд на сходимость, применяя необходимый признак:

$$\sum_{n=1}^{\infty} \sqrt{\frac{2n+1}{n+1}}.$$

Задание 3. Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов:

$$\sum_{n=1}^{\infty} \frac{3n+1}{\left(\sqrt{3}\right)^n}.$$

$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n} + n - 2}.$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot (n+1)!}{10^n}.$$

Задание 6. Найти область сходимости данного степенного ряда:

1)
$$\sum_{n=1}^{\infty} \frac{(-3x)^n}{(2n-1)!};$$

$$2)\sum_{n=1}^{\infty}\frac{(x-1)^{2n}}{n\sqrt{n^2+4n-1}}.$$

Задание 7.

- а) Разложить в ряд Тейлора по степеням (x 1).
- б) Разложить в ряд Маклорена, используя известные разложения функций в ряды.

a)
$$f(x) = (1 + 2x)^3$$
;

$$f(x) = \ln\left(1 - \frac{\pi x}{4}\right).$$

Задание 8.

- а) Найти приближенное значение функции с точностью до 0,001.
- б) Найти приближенное значение интегралов с точностью до 0,001.

a)
$$\sqrt{1,02}$$
;

6)
$$\int_{0}^{1,2} \frac{1 - \cos 2.5x}{x^2} dx.$$

Задание 9. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего данным начальным условиям:

$$y'' + 2.5x^2y = x$$
, $y(0) = 0, y'(0) = 0$.

Задание 10.

- а) Разложить функцию в ряд Фурье.
- б) Разложить функцию в неполный ряд Фурье в указанном интервале.

a)
$$f(x) = \begin{cases} x, -\pi < x \le 0; \\ 2, 0 < x < \pi; \end{cases}$$

б)
$$f(x) = 2 - |x|$$
, $(0; \pi)$ по косинусам.

Вариант 21

Задание 1. Исследовать ряд на сходимость по определению сходящегося ряда:

$$\frac{1}{3 \cdot 6} + \frac{1}{6 \cdot 9} + \frac{1}{9 \cdot 12} + \cdots$$

Задание 2. Исследовать ряд на сходимость, применяя необходимый признак:

$$\sum_{n=1}^{\infty} \sqrt{\frac{3n-2}{n+3}}.$$

Задание 3. Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов:

$$\sum_{n=1}^{\infty} \frac{10n+1}{3^n}.$$

$$\sum_{n=1}^{\infty} \sqrt{\frac{n}{n^5 + 1}}.$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot n(n+1)}{3^n}.$$

Задание 6. Найти область сходимости данного степенного ряда:

1)
$$\sum_{n=1}^{\infty} \frac{(-x)^n}{2^n \ln(n+1)};$$

2)
$$\sum_{n=1}^{\infty} \frac{(n+1)(x+2)^{2n}}{2^n(n^2+1)}.$$

Задание 7.

- а) Разложить в ряд Тейлора по степеням (x 1).
- б) Разложить в ряд Маклорена, используя известные разложения функций в ряды.

a)
$$f(x) = (3x - 1)^2(5x^2 + 1)$$
;

б)
$$f(x) = x \cos \sqrt{x}$$
.

Задание 8.

- а) Найти приближенное значение функции с точностью до 0,001.
- б) Найти приближенное значение интегралов с точностью до 0,001.

$$6) \int_{0}^{1/3} x \cos \sqrt{x} \, dx.$$

Задание 9. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего данным начальным условиям:

$$y'' + 1.8x^2y = 1$$
, $y(0) = 0, y'(0) = 1$.

Задание 10.

- а) Разложить функцию в ряд Фурье.
- б) Разложить функцию в неполный ряд Фурье в указанном интервале.

a)
$$f(x) = \begin{cases} 1, -\pi < x \le 0; \\ -x, 0 < x < \pi; \end{cases}$$

б)
$$f(x) = 2 - 3x$$
, (0; 1) по синусам.

Вариант 22

Задание 1. Исследовать ряд на сходимость по определению сходящегося ряда:

$$\frac{1}{2 \cdot 4} + \frac{1}{3 \cdot 5} + \frac{1}{4 \cdot 6} + \cdots$$

Задание 2. Исследовать ряд на сходимость, применяя необходимый признак:

$$\sum_{n=1}^{\infty} \sqrt{\frac{n^3}{2n^3+1}}.$$

Задание 3. Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов:

$$\sum_{n=1}^{\infty} \frac{3^{n-1}}{(2n)!}.$$

$$\sum_{n=1}^{\infty} \frac{2n^2 - 1}{3n^3 + 1}.$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot n^3}{(2n-1)!}.$$

Задание 6. Найти область сходимости данного степенного ряда:

1)
$$\sum_{n=1}^{\infty} \frac{(-2)^n x^{n-1}}{\sqrt{2n+1}}$$
;

$$2)\sum_{n=1}^{\infty}\frac{(x+1)^{2n-1}}{2^{n}\sqrt[3]{3n+1}}.$$

Задание 7.

- а) Разложить в ряд Тейлора по степеням (x 1).
- б) Разложить в ряд Маклорена, используя известные разложения функций в ряды.

a)
$$f(x) = 2x^4 - x^3 + 2x + 3$$
;

6)
$$f(x) = e^{1-x^2}$$
.

Задание 8.

- а) Найти приближенное значение функции с точностью до 0,001.
- б) Найти приближенное значение интегралов с точностью до 0,001.

a) arctg
$$\frac{1}{4}$$
;

6)
$$\int_{0}^{1} x^{3} \sin x \, dx.$$

Задание 9. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего данным начальным условиям:

$$y'' + 2x^2y = x^2$$
, $y(0) = 0, y'(0) = 0$.

Задание 10.

- а) Разложить функцию в ряд Фурье.
- б) Разложить функцию в неполный ряд Фурье в указанном интервале.

a)
$$f(x) = \begin{cases} 2, -\pi < x \le 0; \\ 1, 0 < x < \pi; \end{cases}$$

б)
$$f(x) = 1 - 2x$$
, $\left(0; \frac{1}{2}\right)$ по синусам.

Вариант 23

Задание 1. Исследовать ряд на сходимость по определению сходящегося ряда:

$$1 - \frac{1}{5} + \frac{1}{25} - \frac{1}{125} + \cdots$$

Задание 2. Исследовать ряд на сходимость, применяя необходимый признак:

$$\sum_{n=1}^{\infty} \frac{4n-3}{5n+1}.$$

Задание 3. Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов:

$$\sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \left(\frac{n+1}{n}\right)^{n^2}.$$

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+2)}}$$

$$\sum_{n=1}^{\infty} (-1)^n \cdot \sin \frac{2\pi}{3^n}.$$

Задание 6. Найти область сходимости данного степенного ряда:

1)
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^{n-1}}{\sqrt[3]{n+1}};$$

$$2)\sum_{n=0}^{\infty}(-2)^{n}(x+1)^{2n}.$$

Задание 7.

- а) Разложить в ряд Тейлора по степеням (x 1).
- б) Разложить в ряд Маклорена, используя известные разложения функций в ряды.

a)
$$f(x) = x^4 + x^2 - x + 1$$
;

$$f(x) = \frac{e^{x^2} - 1}{x^2}.$$

Задание 8.

- а) Найти приближенное значение функции с точностью до 0,001.
- б) Найти приближенное значение интегралов с точностью до 0,001.

a)
$$\sqrt{(0.8)^5}$$
;

6)
$$\int_{0}^{0.25} \sqrt{1+x^3} \, dx.$$

Задание 9. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего данным начальным условиям:

$$y'' + \frac{2}{3}x^2y = x$$
, $y(0) = 0, y'(0) = 0$.

Задание 10.

- а) Разложить функцию в ряд Фурье.
- б) Разложить функцию в неполный ряд Фурье в указанном интервале.

a)
$$f(x) = \pi - |x|, (-\pi; \pi);$$

б)
$$f(x) = 2x + 3$$
, (0; 1) по синусам.

Вариант 24

Задание 1. Исследовать ряд на сходимость по определению сходящегося ряда:

$$\frac{3}{2} + \frac{5}{4} + \frac{7}{8} + \cdots$$

Задание 2. Исследовать ряд на сходимость, применяя необходимый признак:

$$\sum_{n=1}^{\infty} \frac{n^3 + 1}{2n^3 + 1}.$$

Задание 3. Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов:

$$\sum_{n=1}^{\infty} \frac{3^n}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n}.$$

$$\sum_{n=1}^{\infty} \frac{\arctan n}{n^2 + 1}.$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot \sqrt{2n-1}}{(2n+1)!}.$$

Задание 6. Найти область сходимости данного степенного ряда:

1)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (x-5)^n}{n(\sqrt{n}+1)}$$
;

$$2)\sum_{n=1}^{\infty}\frac{(3n-2)x^{2n}}{(n+1)^2}.$$

Задание 7.

- а) Разложить в ряд Тейлора по степеням (x 1).
- б) Разложить в ряд Маклорена, используя известные разложения функций в ряды.

a)
$$f(x) = (x^2 + 1)(x + 2)$$
;

6)
$$f(x) = e^{2x} - \sin 2x$$
.

Задание 8.

- а) Найти приближенное значение функции с точностью до 0,001.
- б) Найти приближенное значение интегралов с точностью до 0,001.

6)
$$\int_{0}^{1} x^{3} \cos \sqrt{x} \, dx.$$

Задание 9. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего данным начальным условиям:

$$y'' + 0.8x^2y = 1$$
, $y(0) = 0, y'(0) = 0$.

Задание 10.

- а) Разложить функцию в ряд Фурье.
- б) Разложить функцию в неполный ряд Фурье в указанном интервале.

a)
$$f(x) = \begin{cases} 2, 0 < x \le 3; \\ 1, 3 < x < 6; \end{cases}$$

б)
$$f(x) = 2(\pi - x)$$
, $(0; \pi)$ по косинусам.

Вариант 25

Задание 1. Исследовать ряд на сходимость по определению сходящегося ряда:

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \cdots$$

Задание 2. Исследовать ряд на сходимость, применяя необходимый признак:

$$\sum_{n=1}^{\infty} \frac{2n^2 - 3}{n(n+1)}.$$

Задание 3. Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов:

$$\sum_{n=1}^{\infty} \left(\frac{2n}{2n+1} \right)^{\frac{n}{2}}.$$

$$\sum_{n=1}^{\infty} \frac{n^2}{\sqrt{1+n^6}}.$$

$$\sum_{n=1}^{\infty} (-1)^n \cdot \left(\frac{n}{2n-1}\right)^3.$$

Задание 6. Найти область сходимости данного степенного ряда:

$$1)\sum_{n=1}^{\infty}\frac{(-1)^{n-1}x^{2n-1}}{2^{n-1}};$$

$$2)\sum_{n=1}^{\infty} \frac{(2x+1)^n}{n^2+1}.$$

Задание 7.

- а) Разложить в ряд Тейлора по степеням (x 1).
- б) Разложить в ряд Маклорена, используя известные разложения функций в ряды.

a)
$$f(x) = (x^2 + 2)^2$$
;

6)
$$f(x) = \frac{x + \ln(1 - x)}{x^2}$$
.

Задание 8.

- а) Найти приближенное значение функции с точностью до 0,001.
- б) Найти приближенное значение интегралов с точностью до 0,001.

a)
$$e^{-\frac{1}{6}}$$
;

$$6) \int_{0}^{1} \sqrt{x} e^{-x} dx.$$

Задание 9. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего данным начальным условиям:

$$y'' + 2.3x^2y = 0$$
, $y(0) = 0, y'(0) = 1$.

Задание 10.

- а) Разложить функцию в ряд Фурье.
- б) Разложить функцию в неполный ряд Фурье в указанном интервале.

a)
$$f(x) = \begin{cases} -2, -3 < x \le 0; \\ 3, 0 < x < 3. \end{cases}$$

б)
$$f(x) = |\sin x|, (0; \pi)$$
 по косинусам.

Вариант 26

Задание 1. Исследовать ряд на сходимость по определению сходящегося ряда:

$$\frac{2}{3} + \frac{2}{1 \cdot 3} + \frac{2}{2 \cdot 4} + \frac{2}{3 \cdot 5} + \cdots$$

Задание 2. Исследовать ряд на сходимость, применяя необходимый признак:

$$\sum_{n=1}^{\infty} \sqrt{\frac{2n-1}{2n+1}}.$$

Задание 3. Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов:

$$\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{10^n}.$$

$$\sum_{n=1}^{\infty} \frac{1}{n(\ln n)^2}.$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln(n+1)}.$$

Задание 6. Найти область сходимости данного степенного ряда:

1)
$$\sum_{n=1}^{\infty} (-1)^n (2n+1)^2 x^n$$
;

2)
$$\sum_{n=1}^{\infty} \frac{(n+1)^2(x-2)^{2n}}{2^n}.$$

Задание 7.

- а) Разложить в ряд Тейлора по степеням (x 1).
- б) Разложить в ряд Маклорена, используя известные разложения функций в ряды.

a)
$$f(x) = (x^2 + 4)^3$$
;

$$f(x) = \frac{\sin x^3}{x}.$$

Задание 8.

- а) Найти приближенное значение функции с точностью до 0,001.
- б) Найти приближенное значение интегралов с точностью до 0,001.

a)
$$\sqrt[5]{250}$$
;

6)
$$\int_{0}^{1/3} \frac{dx}{\sqrt[3]{1-x^2}}$$

Задание 9. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего данным начальным условиям:

$$y'' + 1.5x^2y = 1$$
, $y(0) = 0, y'(0) = 0$.

Задание 10.

- а) Разложить функцию в ряд Фурье.
- б) Разложить функцию в неполный ряд Фурье в указанном интервале.

a)
$$f(x) = \begin{cases} 0, -1 < x \le 0; \\ \frac{1}{2}x, 0 < x < 1; \end{cases}$$

б)
$$f(x) = |x|, (0; \pi)$$
 по синусам.

Вариант 27

Задание 1. Исследовать ряд на сходимость по определению сходящегося ряда:

$$-1 + \frac{2}{3} - \frac{4}{9} + \frac{8}{27} - \cdots$$

Задание 2. Исследовать ряд на сходимость, применяя необходимый признак:

$$\sum_{n=1}^{\infty} \frac{n^2+2}{n(n+1)}.$$

Задание 3. Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов:

$$\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n+1)}{2 \cdot 5 \cdot 8 \cdot \dots \cdot (3n+2)}.$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n - 1}.$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot \ln n}{\sqrt{n} + 2}.$$

Задание 6. Найти область сходимости данного степенного ряда:

1)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{6^n \sqrt{n+1}}$$
;

$$2)\sum_{n=1}^{\infty}\frac{(2x-1)^{2n}}{n!}.$$

Задание 7.

- а) Разложить в ряд Тейлора по степеням (x 1).
- б) Разложить в ряд Маклорена, используя известные разложения функций в ряды.

a)
$$f(x) = 2x^3 + x^2 - 1$$
;

б)
$$f(x) = 1 - \cos \sqrt{x}$$
.

Задание 8.

- а) Найти приближенное значение функции с точностью до 0,001.
- б) Найти приближенное значение интегралов с точностью до 0,001.

a)
$$\sin \frac{5}{3}$$
;

6)
$$\int_{0}^{1/2} \ln(1+\sqrt{x}) dx$$
.

Задание 9. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего данным начальным условиям:

$$y'' + 3x^2y = x$$
, $y(0) = 0$, $y'(0) = 0$.

Задание 10.

- а) Разложить функцию в ряд Фурье.
- б) Разложить функцию в неполный ряд Фурье в указанном интервале.

a)
$$f(x) = \pi - \frac{x}{2}$$
, $(-\pi; \pi)$;

б)
$$f(x) = \frac{1+x}{2}$$
, (0; 5) по косинусам.

Вариант 28

Задание 1. Исследовать ряд на сходимость по определению сходящегося ряда:

$$\frac{1}{4} + \frac{1}{2 \cdot 5} + \frac{1}{3 \cdot 6} + \cdots$$

Задание 2. Исследовать ряд на сходимость, применяя необходимый признак:

$$\sum_{n=1}^{\infty} \sqrt{\frac{3n^2}{3n^2 - 2}}.$$

Задание 3. Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов:

$$\sum_{n=1}^{\infty} \left(\frac{3n+1}{n+1} \right)^{2n}.$$

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + 1}}$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot 3n}{(n+1)^2}.$$

Задание 6. Найти область сходимости данного степенного ряда:

1)
$$\sum_{n=0}^{\infty} \frac{(-1)^n (2x)^n}{n!}$$
;

$$2)\sum_{n=1}^{\infty} \frac{(x+3)^{2n}}{2n+1}.$$

Задание 7.

- а) Разложить в ряд Тейлора по степеням (x 1).
- б) Разложить в ряд Маклорена, используя известные разложения функций в ряды.

a)
$$f(x) = 2x^3 - x^2 + x + 1$$
;

б)
$$f(x) = x \ln(1 - x^2)$$
.

Задание 8.

- а) Найти приближенное значение функции с точностью до 0,001.
- б) Найти приближенное значение интегралов с точностью до 0,001.

a)
$$\frac{1}{\sqrt[5]{e}}$$
;

6)
$$\int_{0}^{0.2} \ln(1+x^2) dx$$
.

Задание 9. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего данным начальным условиям:

$$y'' + \frac{2}{3}x^2y = 0$$
, $y(0) = 1, y'(0) = 0$.

Задание 10.

- а) Разложить функцию в ряд Фурье.
- б) Разложить функцию в неполный ряд Фурье в указанном интервале.

a)
$$f(x) = \begin{cases} 4, -\frac{1}{2} < x \le 0; \\ 1, 0 < x < \frac{1}{2}; \end{cases}$$

б) $f(x) = 2x + \pi$, $(0; \pi)$ по синусам.

Вариант 29

Задание 1. Исследовать ряд на сходимость по определению сходящегося ряда:

$$-\frac{4}{9} + \frac{4}{81} - \frac{4}{729} + \cdots$$

Задание 2. Исследовать ряд на сходимость, применяя необходимый признак:

$$\sum_{n=1}^{\infty} \frac{n(n+1)}{(n+2)(n+3)}.$$

Задание 3. Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов:

$$\sum_{n=1}^{\infty} \frac{3^{2n-1}}{8^n}.$$

Задание 4. Исследовать ряд на сходимость:

$$\sum_{n=1}^{\infty} \left(\frac{3n-1}{2n+3} \right)^n.$$

Задание 5. Исследовать ряд на абсолютную и условную сходимости:

$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{3n-2}{n^3}.$$

Задание 6. Найти область сходимости данного степенного ряда:

1)
$$\sum_{n=0}^{\infty} \frac{(-6)^n (x+5)^n}{n+2}$$
;

2)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} (2x)^{2n-1}}{(2n-1)!}.$$

Задание 7.

- а) Разложить в ряд Тейлора по степеням (x 1).
- б) Разложить в ряд Маклорена, используя известные разложения функций в ряды.

a)
$$f(x) = (x^2 + 1)(x + 2);$$

$$f(x) = \frac{\sin \sqrt{x^3}}{\sqrt{x}}.$$

Задание 8.

- а) Найти приближенное значение функции с точностью до 0,001.
- б) Найти приближенное значение интегралов с точностью до 0,001.

$$\text{6)} \int_{0}^{0.5} \frac{\arcsin x}{x} dx.$$

Задание 9. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего данным начальным условиям:

$$y'' + 3x^2y = x^2$$
, $y(0) = 0, y'(0) = 0$.

Задание 10.

- а) Разложить функцию в ряд Фурье.
- б) Разложить функцию в неполный ряд Фурье в указанном интервале.

a)
$$f(x) = \begin{cases} \frac{1}{2}, -2 < x \le 0; \\ 2x, 0 < x < 2. \end{cases}$$

б)
$$f(x) = \frac{\pi - x}{2}$$
, (0; π) по синусам.

Вариант 30

Задание 1. Исследовать ряд на сходимость по определению сходящегося ряда:

$$1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$$

Задание 2. Исследовать ряд на сходимость, применяя необходимый признак:

$$\sum_{n=1}^{\infty} \sqrt{\frac{n^3}{n^3 + 4}}.$$

Задание 3. Исследовать ряд на сходимость, применяя достаточные признаки сходимости рядов:

119

$$\sum_{n=1}^{\infty} \left(\frac{2n-1}{n+1}\right)^{3n}.$$

 $3 a daнue \ 4.$ Исследовать ряд на сходимость: $\sum_{n=1}^{\infty} \frac{\sqrt{n^2+1}}{n^2-n+1}.$

$$\sum_{n=1}^{\infty} \frac{\sqrt{n^2 + 1}}{n^2 - n + 1}$$

Задание 5. Исследовать ряд на абсолютную и условную сходимости:

$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{n}{n^2 + 1}.$$

Задание 6. Найти область сходимости данного степенного ряда:

1)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (3x-1)^n}{\sqrt{2n+1}};$$

$$2)\sum_{n=1}^{\infty} \frac{x^{2n}}{n \cdot 10^{n-1}}.$$

Задание 7.

- а) Разложить в ряд Тейлора по степеням (x 1).
- б) Разложить в ряд Маклорена, используя известные разложения функций в ряды.

a)
$$f(x) = 3(x-3)(x+1)^2$$
;

$$f(x) = \frac{\sin 3x}{2x}.$$

Задание 8.

- а) Найти приближенное значение функции с точностью до 0,001.
- б) Найти приближенное значение интегралов с точностью до 0,001.

a)
$$\cos\frac{1}{4}$$
;

$$\text{6) } \int \frac{dx}{1+x^4}.$$

Задание 9. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего начальным условиям:

$$y'' + 2.5x^2y = 0$$
, $y(0) = 1, y'(0) = 0$.

Задание 10.

- а) Разложить функцию в ряд Фурье.
- б) Разложить функцию в неполный ряд Фурье в указанном интервале.

a)
$$f(x) = 1 + |x|, (-\pi; \pi);$$

б)
$$f(x) = x + \frac{1}{2}$$
, (0; 1) по синусам.

Библиографический список

- 1. Булычева С.В. Математика дифференциальные уравнения. Практикум: Учебное пособие [Электронный ресурс] / С.В. Булычева. М.: ФГУП НТЦ «Информрегистр», 2018.
- 2. Грачева Л.А., Гугина Е.М. Комплексные числа. Элементы теории функций комплексной переменной: учебное пособие и практикум с вариантами контрольных работ: Учебное пособие [Электронный ресурс] / Л.А. Грачева, Е.М. Гугина. М.: ФГУП НТЦ «Информрегистр», 2017.
- 3. Грачева, Л.А. Ряды: курс лекций и практикум [Электронный ресурс] / Л.А. Грачева, Е.М. Гугина. М.: ФГУП НТЦ «Информрегистр», 2015.
- 4. Коротецкая, В.А. Функции нескольких переменных: учебное пособие [Электронный ресурс] / В.А. Коротецкая, Ю.А. Извеков. М.: ФГУП НТЦ «Информрегистр», 2015.
- 5. Пузанкова, Е.А. Дифференциальные уравнения: учебное пособие [Электронный ресурс] / Е.А. Пузанкова, А.Г.Терентьев. М.: ФГУП НТЦ «Информрегистр», 2013.
- 6. Шипачев В.С. Задачник по высшей математике: Учебное пособие / В.С. Шипачев. 10-е изд., стер. М.: НИЦ ИНФРА-М, 2016. 304 с

Учебное текстовое электронное издание

Извеков Юрий Александрович Шеметова Вероника Владимировна

СБОРНИК КОНТРОЛЬНЫХ ЗАДАНИЙ ПО МАТЕМАТИКЕ. ЧАСТЬ 2

Практикум

1,28 Мб 1 электрон. опт. диск

г. Магнитогорск, 2019 год ФГБОУ ВО «МГТУ им. Г.И. Носова» Адрес: 455000, Россия, Челябинская область, г. Магнитогорск, пр. Ленина 38

ФГБОУ ВО «Магнитогорский государственный технический университет им. Г.И. Носова» Кафедра высшей математики Центр электронных образовательных ресурсов и дистанционных образовательных технологий e-mail: ceor_dot@mail.ru